On fuzzification of the notion of quantaloid
Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee$-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee$-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
Classification : 03E72, 06F07, 16G99, 18A40, 18B99
Keywords: many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
@article{KYB_2010_46_6_a8,
     author = {Solovyov, Sergey A.},
     title = {On fuzzification of the notion of quantaloid},
     journal = {Kybernetika},
     pages = {1025--1048},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797425},
     zbl = {1218.06012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a8/}
}
TY  - JOUR
AU  - Solovyov, Sergey A.
TI  - On fuzzification of the notion of quantaloid
JO  - Kybernetika
PY  - 2010
SP  - 1025
EP  - 1048
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a8/
LA  - en
ID  - KYB_2010_46_6_a8
ER  - 
%0 Journal Article
%A Solovyov, Sergey A.
%T On fuzzification of the notion of quantaloid
%J Kybernetika
%D 2010
%P 1025-1048
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a8/
%G en
%F KYB_2010_46_6_a8
Solovyov, Sergey A. On fuzzification of the notion of quantaloid. Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a8/

[1] Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics. Math. Struct. Comput. Sci. 3 (1993), 161–227. | DOI | MR | Zbl

[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats. Dover Publications, Mineola, New York 2009. | MR

[3] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Second edition. Springer-Verlag, 1992. | MR | Zbl

[4] Betti, R., Kasangian, S.: Tree automata and enriched category theory. Rend. Ist. Mat. Univ. Trieste 17 (1985), 71–78. | MR | Zbl

[5] Borceux, F.: Handbook of Categorical Algebra. Volume 2: Categories and Structures. Cambridge University Press, 1994. | MR | Zbl

[6] Brown, C., Gurr, D.: A representation theorem for quantales. J. Pure Appl. Algebra 85 (1993), 1, 27–42. | DOI | MR | Zbl

[7] Chang, C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190. | DOI | MR | Zbl

[8] Dilworth, R. P.: Non-commutative residuated lattices. Trans. Amer. math. Soc. 46 (1939), 426–444. | MR | Zbl

[9] Gierz, G., Hofmann, K., al., et: Continuous Lattices and Domains. Cambridge University Press, 2003. | MR | Zbl

[10] Girard, J.: Linear logic. Theor. Comput. Sci. 50 (1987), 1–102. | DOI | Zbl

[11] Goguen, J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145–174. | DOI | MR | Zbl

[12] Goguen, J. A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43 (1973), 734–742. | DOI | MR | Zbl

[13] Grillet, P. A.: Abstract Algebra. Second edition. Springer-Verlag, 2007. | MR | Zbl

[14] Gylys, R.: Involutive and relational quantaloids. Lith. Math. J. 39 (1999), 4, 376–388. | DOI | MR | Zbl

[15] Halmos, P.: Algebraic Logic. Chelsea Publishing Company, 1962. | MR | Zbl

[16] Herrlich, H., Strecker, G. E.: Category Theory. Third edition. Heldermann Verlag, 2007. | MR | Zbl

[17] Höhle, U.: Quantaloids as categorical basis for many valued mathematics. In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, eds.), Johannes Kepler Universität, Linz 2010, pp. 91–92.

[18] Hungerford, T.: Algebra. Springer-Verlag, 2003.

[19] Johnstone, P. T.: Stone Spaces. Cambridge University Press, 1982. | MR | Zbl

[20] Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. Mem. Am. Math. Soc. 309 (1984), 1–71. | MR | Zbl

[21] Kasangian, S., Rosebrugh, R.: Decomposition of automata and enriched category theory. Cah. Topologie Géom. Différ. Catég. 27 (1986), 4, 137–143. | MR | Zbl

[22] Kelly, G. M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ. 10 (2005), 1–136. | MR | Zbl

[23] Kruml, D., Paseka, J.: Algebraic and categorical aAspects of quantales. In: Handbook of Algebra (M. Hazewinkel, ed.), 5, Elsevier, 2008, pp. 323–362. | MR

[24] Lawvere, F. W.: Metric spaces, generalized logic and closed categories. Repr. Theory Appl. Categ. 1 (2002), 1–37. | MR | Zbl

[25] Lowen, R.: Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56 (1976), 621–633. | DOI | MR | Zbl

[26] Lane, S. Mac: Categories for the Working Mathematician. Second edition. Springer-Verlag, 1998. | MR

[27] Mitchell, B.: Rings with several objects. Adv. Math. 8 (1972), 1–161. | DOI | MR | Zbl

[28] Mulvey, C.: & Rend. Circ. Mat. Palermo II (1986), 12, 99–104. | MR

[29] Mulvey, C. J., Pelletier, J. W.: On the quantisation of points. J. Pure Appl. Algebra 159 (2001), 231–295. | DOI | MR | Zbl

[30] Mulvey, C. J., Pelletier, J. W.: On the quantisation of spaces. J. Pure Appl. Algebra 175 (2002), 1-3, 289–325. | MR | Zbl

[31] Paseka, J.: Quantale Modules. Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno 1999.

[32] Paseka, J.: A note on nuclei of quantale modules. Cah. Topologie Géom. Différ. Catégoriques 43 (2002), 1, 19–34. | MR | Zbl

[33] Pitts, A. M.: Applications of sup-lattice enriched category theory to sheaf theory. Proc. Lond. Math. Soc. III. 57 (1988), 3, 433–480. | MR | Zbl

[34] Rosenthal, K. I.: Quantales and Their Applications. Addison Wesley Longman, 1990. | MR | Zbl

[35] Rosenthal, K. I.: Free quantaloids. J. Pure Appl. Algebra 72 (1991), 1, 67–82. | DOI | MR | Zbl

[36] Rosenthal, K. I.: Girard quantaloids. Math. Struct. Comput. Sci. 2 (1992), 1, 93–108. | DOI | MR | Zbl

[37] Rosenthal, K. I.: Quantaloidal nuclei, the syntactic congruence and tree automata. J. Pure Appl. Algebra 77 (1992), 2, 189–205. | DOI | MR | Zbl

[38] Rosenthal, K. I.: Quantaloids, enriched categories and automata theory. Appl. Categ. Struct. 3 (1995), 3, 279–301. | DOI | MR | Zbl

[39] Rosenthal, K. I.: The Theory of Quantaloids. Addison Wesley Longman, 1996. | MR | Zbl

[40] Solovjovs, S.: Powerset operator foundations for categorically-algebraic fuzzy sets theories. In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, ed.), Johannes Kepler Universität, Linz 2010, pp. 143–151.

[41] Solovyov, S.: Completion of partially ordered sets. Discuss. Math., Gen. Algebra Appl. 27 (2007), 59–67. | DOI | MR | Zbl

[42] Solovyov, S.: On coproducts of quantale algebras. Math. Stud. (Tartu) 3 (2008), 115–126. | MR | Zbl

[43] Solovyov, S.: On the category $Q$-Mod. Algebra Univers. 58 (2008), 35–58. | MR | Zbl

[44] Solovyov, S.: A representation theorem for quantale algebras. Contr. Gen. Alg. 18 (2008), 189–198. | MR | Zbl

[45] Solovyov, S.: Sobriety and spatiality in varieties of algebras. Fuzzy Sets Syst. 159 (2008), 19, 2567–2585. | MR | Zbl

[46] Solovyov, S.: From quantale algebroids to topological spaces: fixed- and variable-basis approaches. Fuzzy Sets Syst. 161 (2010), 9, 1270–1287. | MR | Zbl

[47] Solovyov, S.: On monadic quantale algebras: basic properties and representation theorems. Discuss. Math., Gen. Algebra Appl. 30 (2010), 1, 91–118. | DOI | MR | Zbl

[48] Street, R.: Elementary cosmoi I. Lect. Notes Math. 420 (1974), 134–180. | DOI | MR | Zbl

[49] Street, R.: Cauchy characterization of enriched categories. Repr. Theory Appl. Categ. 4 (2004), 1–16. | MR | Zbl

[50] Street, R.: Enriched categories and cohomology. Repr. Theory Appl. Categ. 14 (2005), 1–18. | MR | Zbl

[51] Stubbe, I.: Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ. 14 (2005), 1–45. | MR | Zbl

[52] Stubbe, I.: Categorical structures enriched in a quantaloid: Orders and ideals over a base quantaloid. Appl. Categ. Struct. 13 (2005), 3, 235–255. | DOI | MR | Zbl

[53] Stubbe, I.: Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories. Cah. Topol. Géom. Différ. Catég. 46 (2005), 2, 99–121. | MR | Zbl

[54] Stubbe, I.: Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl. Categ. 16 (2006), 283–306. | MR | Zbl

[55] Stubbe, I.: $\cal Q$-modules are $\cal Q$-suplattices. Theory Appl. Categ. 19 (2007), 4, 50–60. | MR

[56] Ward, M.: Residuation in structures over which a multiplication is defined. Duke math. J. 3 (1937), 627–636. | DOI | MR | Zbl

[57] Ward, M.: Structure residuation. Ann. Math. 39 (1938), 558–568. | DOI | MR | Zbl

[58] Ward, M., Dilworth, R. P.: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335–354. | DOI | MR | Zbl