Fuzzification of crisp domains
Kybernetika, Tome 46 (2010) no. 6, pp. 1009-1024 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present paper is devoted to the transition from crisp domains of probability to fuzzy domains of probability. First, we start with a simple transportation problem and present its solution. The solution has a probabilistic interpretation and it illustrates the transition from classical random variables to fuzzy random variables in the sense of Gudder and Bugajski. Second, we analyse the process of fuzzification of classical crisp domains of probability within the category $ID$ of $D$-posets of fuzzy sets and put into perspective our earlier results concerning categorical aspects of fuzzification. For example, we show that (within $ID$) all nontrivial probability measures have genuine fuzzy quality and we extend the corresponding fuzzification functor to an epireflector. Third, we extend the results to simplex-valued probability domains. In particular, we describe the transition from crisp simplex-valued domains to fuzzy simplex-valued domains via a “simplex” modification of the fuzzification functor. Both, the fuzzy probability and the simplex-valued fuzzy probability is in a sense minimal extension of the corresponding crisp probability theory which covers some quantum phenomenon.
The present paper is devoted to the transition from crisp domains of probability to fuzzy domains of probability. First, we start with a simple transportation problem and present its solution. The solution has a probabilistic interpretation and it illustrates the transition from classical random variables to fuzzy random variables in the sense of Gudder and Bugajski. Second, we analyse the process of fuzzification of classical crisp domains of probability within the category $ID$ of $D$-posets of fuzzy sets and put into perspective our earlier results concerning categorical aspects of fuzzification. For example, we show that (within $ID$) all nontrivial probability measures have genuine fuzzy quality and we extend the corresponding fuzzification functor to an epireflector. Third, we extend the results to simplex-valued probability domains. In particular, we describe the transition from crisp simplex-valued domains to fuzzy simplex-valued domains via a “simplex” modification of the fuzzification functor. Both, the fuzzy probability and the simplex-valued fuzzy probability is in a sense minimal extension of the corresponding crisp probability theory which covers some quantum phenomenon.
Classification : 60A05, 60A86
Keywords: domain of probability; fuzzy random variable; crisp random event; fuzzy observable; fuzzification; category of $ID$-poset; epireflection; simplex-valued domains
@article{KYB_2010_46_6_a7,
     author = {Fri\v{c}, Roman and Pap\v{c}o, Martin},
     title = {Fuzzification of crisp domains},
     journal = {Kybernetika},
     pages = {1009--1024},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797424},
     zbl = {1219.60006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a7/}
}
TY  - JOUR
AU  - Frič, Roman
AU  - Papčo, Martin
TI  - Fuzzification of crisp domains
JO  - Kybernetika
PY  - 2010
SP  - 1009
EP  - 1024
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a7/
LA  - en
ID  - KYB_2010_46_6_a7
ER  - 
%0 Journal Article
%A Frič, Roman
%A Papčo, Martin
%T Fuzzification of crisp domains
%J Kybernetika
%D 2010
%P 1009-1024
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a7/
%G en
%F KYB_2010_46_6_a7
Frič, Roman; Papčo, Martin. Fuzzification of crisp domains. Kybernetika, Tome 46 (2010) no. 6, pp. 1009-1024. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a7/

[1] Bugajski, S.: Statistical maps I. Basic properties. Math. Slovaca 51 (2001), 321–342. | MR | Zbl

[2] Bugajski, S.: Statistical maps II. Basic properties. Math. Slovaca 51 (2001), 343–361. | MR | Zbl

[3] Chovanec, F., Frič, R.: States as morphisms. Internat. J. Theoret. Phys. 49 (2010), 3050–3100. | DOI | MR | Zbl

[4] Chovanec, F., Kôpka, F.: $D$-posets. In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures. (K. Engesser, D. M. Gabbay and D. Lehmann, eds.), Elsevier, Amsterdam 2007, pp. 367–428. | MR | Zbl

[5] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava 2000. | MR

[6] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables. Tatra Mt. Math. Publ. 30 (2005), 21–34. | MR | Zbl

[7] Frič, R.: Statistical maps: a categorical approach. Math. Slovaca 57 (2007), 41–57. | DOI | MR | Zbl

[8] Frič, R.: Extension of domains of states. Soft Comput. 13 (2009), 63–70. | DOI | Zbl

[9] Frič, R.: Simplex-valued probability. Math. Slovaca 60 (2010), 607–614. | DOI | MR | Zbl

[10] Frič, R.: States on bold algebras: Categorical aspects. J. Logic Comput. (To appear). DOI:10.1093/logcom/exp014 | MR

[11] Frič, R., Papčo, M.: On probability domains. Internat. J. Theoret. Phys. 49 (2010), 3092–3063. | DOI | Zbl

[12] Frič, R., Papčo, M.: A categorical approach to probability theory. Studia Logica 94 (2010), 215–230. | DOI | MR | Zbl

[13] Gudder, S.: Fuzzy probability theory. Demonstratio Math. 31 (1998), 235–254. | MR | Zbl

[14] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. | MR

[15] Mesiar, R.: Fuzzy sets and probability theory. Tatra Mt. Math. Publ. 1 (1992), 105–123. | MR | Zbl

[16] Papčo, M.: On measurable spaces and measurable maps. Tatra Mt. Math. Publ. 28 (2004), 125–140. | MR | Zbl

[17] Papčo, M.: On fuzzy random variables: examples and generalizations. Tatra Mt. Math. Publ. 30 (2005), 175–185. | MR | Zbl

[18] Papčo, M.: On effect algebras. Soft Comput. 12 (2007), 26–35. | DOI

[19] Riečan, B., Mundici, D.: Probability on $MV$-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam 2002, pp. 869–910. | MR | Zbl

[20] Zadeh, L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421–427. | DOI | MR | Zbl