Keywords: pseudo-effect algebra; lattice pseudo-effect algebra; pseudo-MV-algebra; compatible elements; central element
@article{KYB_2010_46_6_a6,
author = {Vitolo, Paolo},
title = {Compatibility and central elements in pseudo-effect algebras},
journal = {Kybernetika},
pages = {996--1008},
year = {2010},
volume = {46},
number = {6},
mrnumber = {2797423},
zbl = {1226.06005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a6/}
}
Vitolo, Paolo. Compatibility and central elements in pseudo-effect algebras. Kybernetika, Tome 46 (2010) no. 6, pp. 996-1008. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a6/
[1] Avallone, A., Barbieri, G., Vitolo., P.: Central elements in pseudo-D-lattices and Hahn decomposition theorem. Boll. Unione Mat. Ital. 9 (2010), III(3), 447-470. | MR
[2] Avallone, A., Vitolo, P.: Pseudo-D-lattices and topologies generated by measures. Italian J. Pure Appl. Math., to appear.
[3] Bennet, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 10, 1331–1352. | DOI | MR
[4] Butnariu, D., Klement, P.: Triangular Norm-based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993. | Zbl
[5] Dvurečenskij, A.: Blocks of pseudo-effect algebras with the Riesz interpolation property. Soft Computing 7 (2003), 441–445. | Zbl
[6] Dvurečenskij, A.: Central elements and Cantor–Bernstein theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74 (2003), 121–143. | DOI | MR
[7] Dvurečenskij, A.: New quantum structures. In: Handbook of quantum logic and quantum structures (K. Engesser, D. M. Gabbay, and D. Lehmann, eds.), Elsevier, 2007. | MR | Zbl
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. | MR
[9] Dvurečenskij, A., Vetterlein, T.: Congruences and states on pseudoeffect algebras. Found. Phys. Lett. 14 (2001), 5, 425–446. | DOI | MR
[10] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Internat. J. Theoret. Phys. 40 (2001),3, 685–701. | MR | Zbl
[11] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representations. Internat. J. Theoret. Phys. 40 (2001), 3, 703–726. | DOI | MR | Zbl
[12] Dvurečenskij, A., Vetterlein, T.: On pseudo-effect algebras which can be covered by pseudo MV-algebras. Demonstratio Math. 36 (2003), 2, 261–282. | MR | Zbl
[13] Epstein, L. G., Zhang, J.: Subjective probabilities on subjectively unambiguous events. Econometrica 69 (2001), 2, 265–306. | DOI | MR | Zbl
[14] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-Valued Log. 6 G. C. Moisil memorial issue. (2001), 1-2, 95–135. | MR | Zbl
[15] Kôpka, F., Chovanec, F.: D-posets. Mathematica Slovaca 44 (1994), 21–34. | MR
[16] Pulmannová, S.: Generalized Sasaki projections and Riesz ideals in pseudoeffect algebras. Internat. J. Theoret. Phys. 42 (2003), 7, 1413–1423. | DOI | MR | Zbl
[17] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158. | MR
[18] Yun, S., Yongming, L., Maoyin, C.: Pseudo difference posets and pseudo Boolean D-posets. Internat. J. Theoret. Phys. 43 (2004), 12, 2447–2460. | DOI | MR | Zbl