Quantum logics and bivariable functions
Kybernetika, Tome 46 (2010) no. 6, pp. 982-995 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.
New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.
Classification : 03G10, 03G12, 03G25, 03H05
Keywords: finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements
@article{KYB_2010_46_6_a5,
     author = {Drobn\'a, Eva and N\'an\'asiov\'a, O\'lga and Val\'a\v{s}kov\'a, \'Lubica},
     title = {Quantum logics and bivariable functions},
     journal = {Kybernetika},
     pages = {982--995},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797422},
     zbl = {1229.03054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a5/}
}
TY  - JOUR
AU  - Drobná, Eva
AU  - Nánásiová, Oĺga
AU  - Valášková, Ĺubica
TI  - Quantum logics and bivariable functions
JO  - Kybernetika
PY  - 2010
SP  - 982
EP  - 995
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a5/
LA  - en
ID  - KYB_2010_46_6_a5
ER  - 
%0 Journal Article
%A Drobná, Eva
%A Nánásiová, Oĺga
%A Valášková, Ĺubica
%T Quantum logics and bivariable functions
%J Kybernetika
%D 2010
%P 982-995
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a5/
%G en
%F KYB_2010_46_6_a5
Drobná, Eva; Nánásiová, Oĺga; Valášková, Ĺubica. Quantum logics and bivariable functions. Kybernetika, Tome 46 (2010) no. 6, pp. 982-995. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a5/

[1] Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic. Inform. Sci. 179 (2009), 4199–4207. | DOI | MR | Zbl

[2] Dohnal, G.: Markov property in quantum logic. A reflection. Inform. Sci. 179 (2009), 485–491. | DOI | MR | Zbl

[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structure. Kluwer Acad. Publishers, Dortrecht/Boston/London, Ister Science, Bratislava 2000. | MR

[4] Greechie, R. J.: Orthogonal lattices admitting no states. J. Combin. Theory, Ser. A10 (1971), 119–132. | DOI | MR

[5] Kalmbach, G.: Orthomodular Lattices. Academic Press, London 1983. | MR | Zbl

[6] Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Internat. J. Theoret. Phys. 42 (2003), 1889–1903. | DOI | MR | Zbl

[7] Nánásiová, O.: Principle conditioning. Internat. J. Theoret. Phys. 43 (2004), 1757–1767. | DOI | MR | Zbl

[8] Nánásiová, O., Khrennikov, A.: Representation theorem for observables on a quantum system. Internat. J. Theoret. Phys. 45 (2006), 469–482. | DOI | MR

[9] Nánásiová, O., Khrennikov, A.: Compatibility and marginality. Internat. J. Theoret. Phys. 46 (2007) 1083–1095. | DOI | MR | Zbl

[10] Nánásiová, O., Pulmannová, S.: S-map and tracial states. Inform. Sci. 179 (2009) 515–520. | DOI | MR | Zbl

[11] Nánásiová, O., Trokanová, K., Žembery, I.: Commutative and non commutative s-maps. Forum Statist. Slovacum 2 (2007) 172–177.

[12] Nánásiová, O., Valášková, L’.: Maps on a quantum logic. Soft Computing (2009). doi:10.1007/s00500-009-0483-4

[13] Nánásiová, O., Valášková, L’.: Marginality and triangle inequality Internat. J. Theoret. Phys. (2010), accepted. | MR

[14] Navara, M.: An othomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122 (1994), 7–12. | DOI | MR

[15] Neumann, J. von: Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin 1932. | MR

[16] Pták, P., Pulmannová, S.: Quantum Logics. Kluwer Acad. Press, Bratislava 1991. | MR

[17] Varadarajan, V.: Geometry of Quantum Theory. D. Van Nostrand, Princeton, New Jersey 1968. | MR | Zbl