Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
Kybernetika, Tome 46 (2010) no. 6, pp. 953-970 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.
We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.
Classification : 03G12, 03G25, 06F05, 08A55, 54H12
Keywords: non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states
@article{KYB_2010_46_6_a3,
     author = {Paseka, Jan and Rie\v{c}anov\'a, Zdenka and Wu, Junde},
     title = {Almost orthogonality and {Hausdorff} interval topologies of atomic lattice effect algebras},
     journal = {Kybernetika},
     pages = {953--970},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797420},
     zbl = {1229.03055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a3/}
}
TY  - JOUR
AU  - Paseka, Jan
AU  - Riečanová, Zdenka
AU  - Wu, Junde
TI  - Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
JO  - Kybernetika
PY  - 2010
SP  - 953
EP  - 970
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a3/
LA  - en
ID  - KYB_2010_46_6_a3
ER  - 
%0 Journal Article
%A Paseka, Jan
%A Riečanová, Zdenka
%A Wu, Junde
%T Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
%J Kybernetika
%D 2010
%P 953-970
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a3/
%G en
%F KYB_2010_46_6_a3
Paseka, Jan; Riečanová, Zdenka; Wu, Junde. Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras. Kybernetika, Tome 46 (2010) no. 6, pp. 953-970. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a3/

[1] Beltrametti, E. G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading 1981. | MR | Zbl

[2] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958) 467–490. | DOI | MR | Zbl

[3] Császár, A.: General Topology. Akadémiai Kiadó, Budapest 1978.

[4] Erné, M., Weck, S.: Order convergence in lattices. Rocky Mt. J. Math. 10 (1980), 805–818. | DOI | MR

[5] Frink, O.: Topology in lattices. Trans. Amer. Math. Soc. 51 (1942), 569–582. | MR | Zbl

[6] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR

[7] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl

[8] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.

[9] Jenča, G., Riečanová, Z.: A survey on sharp elements in unsharp Qquantum logics. J. Electr. Engrg. 52 (2001), 7–8, 237-239.

[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.

[11] Katětov, M.: Remarks on Boolean algebras. Colloq. Math. 11 (1951), 229–235. | MR

[12] Kirchheimová, H., Riečanová, H.: Note on order convergence and order topology. In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997.

[13] Kôpka, F.: Compatibility in D-posets. Interernat. J. Theor. Phys. 34 (1995), 1525–1531. | DOI | MR

[14] Qiang, Lei, Junde, Wu, Ronglu, Li: Interval topology of lattice effect algebras. Appl. Math. Lett. 22 (2009), 1003–1006. | DOI | MR

[15] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/S, 3–6.

[16] Paseka, J., Riečanová, Z.: Compactly generated de Morgan lattices, basic algebras and effect algebras. Internat. J. Theor. Phys. 49 (2010), 3216–3223. | DOI | MR | Zbl

[17] Pulmannová, S., Riečanová, Z.: Compact topological orthomodular lattices. In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. | MR

[18] Pulmannová, S., Riečanová, Z.: Blok finite atomic orthomodular lattices. J. Pure and Applied Algebra 89 (1993), 295–304. | DOI

[19] Riečanová, Z.: On Order Continuity of Quantum Structures and Their Homomorphisms. Demonstratio Mathematica 29 (1996), 433–443. | MR

[20] Riečanová, Z.: Lattices and Quantum Logics with Separated Intervals Atomicity, Internat. J. Theor. Phys. 37 (1998), 191–197. | DOI | MR

[21] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158. | MR

[22] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Mathematica 33 (2000), 443–452. | MR

[23] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. of Theor. Phys. 39 (2000), 231–237. | DOI | MR

[24] Riečanová, Z.: Orthogonal Sets in Effect Algebras. Demonstratio Mathematica 34 (2001), 525–532. | MR | Zbl

[25] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. of Theor. Phys. 41 (2002), 1511–1524. | DOI | MR | Zbl

[26] Riečanová, Z.: Continuous Lattice Effect Algebras Admitting Order-Continuous States. Fuzzy Sests and Systems 136 (2003), 41–54. | MR | Zbl

[27] Riečanová, Z.: Order-topological lattice effect algebras. In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. | MR

[28] Riečanová, Z., Paseka, J.: State smearing theorems and the existence of states on some atomic lattice effect algebras. J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.

[29] Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J.: Ordered algebras. FAN, Tashkent, (in Russian), 1983. | MR

[30] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Archiv d. Math. 7 (1956), 241–249. | MR