Keywords: lattice effect algebra; MV-algebra; sharp element; sharp domination; atom; Euclidean algorithm
@article{KYB_2010_46_6_a2,
author = {Olej\v{c}ek, Vladim{\'\i}r},
title = {Every uniformly {Archimedean} atomic {MV-effect} algebra is sharply dominating},
journal = {Kybernetika},
pages = {948--952},
year = {2010},
volume = {46},
number = {6},
mrnumber = {2797419},
zbl = {1228.03044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a2/}
}
Olejček, Vladimír. Every uniformly Archimedean atomic MV-effect algebra is sharply dominating. Kybernetika, Tome 46 (2010) no. 6, pp. 948-952. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a2/
[1] Cignoli, R., Mundici, D.: An elementary presentation of the equivalence between MV-algebras and $\ell $-groups with strong unit. Studia Logica 61 (1998), 49–64. | DOI | MR | Zbl
[2] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[3] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl
[4] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915–923. | DOI | MR | Zbl
[5] Kalina, M., Olejček, M., Paseka, J., Riečanová, Z.: Sharply Dominating MV-Effect Algebras. Internat. J. Theor. Phys. (2010), doi: 10.1007/s10773-010-0338-x
[6] Kôpka, F.: Boolean D-posets as factor spaces. Internat. J. Theor. Phys. 37 (1998), 93–101. | DOI | MR
[7] Kôpka, F.: D-posets of fuzzy sets. Tatra Mt. Math. Publ. 1 (1992), 83–87. | MR
[8] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. | MR
[9] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstr. Math. 33 (2000), 443–452. | MR
[10] Riečanová, Z.: Subdirect Decompositions of Lattice Effect Algebras. Interernat. J. Theor. Phys. 42 (2003), 1415–1423. | MR | Zbl