Keywords: Choquet integral; comonotone functions; integral inequalities; monotone measure; modularity
@article{KYB_2010_46_6_a13,
author = {Mesiar, Radko and Li, Jun and Pap, Endre},
title = {The {Choquet} integral as {Lebesgue} integral and related inequalities},
journal = {Kybernetika},
pages = {1098--1107},
year = {2010},
volume = {46},
number = {6},
mrnumber = {2797430},
zbl = {1210.28025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/}
}
Mesiar, Radko; Li, Jun; Pap, Endre. The Choquet integral as Lebesgue integral and related inequalities. Kybernetika, Tome 46 (2010) no. 6, pp. 1098-1107. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/
[1] Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol. II, Elsevier Science 2002, pp. 1329–1379. | MR | Zbl
[2] Denneberg, D.: Non–Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994. | MR | Zbl
[3] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1953-54), 131–295. | MR
[4] Flores-Franulič, A., Roman-Flores, H.: A Chebyshev type inequality for fuzzy integrals. J. Appl. Math. Comput. 190 (2007), 1178–1184. | DOI | MR | Zbl
[5] Klement, E. P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Systems 18 (2010), 178–187. | DOI
[6] Mesiar, R., Ouyang, Y.: General Chebyshev type inequalities for Sugeno. Fuzzy Sets and Systems 160 (2009), 58–64. | MR | Zbl
[7] Narukawa, Y.: Distances defined by Choquet integral. In: Proc. IEEE Internat. Conference on Fuzzy Systems, London 2007, CD–ROM [#1159].
[8] Ouyang, Y., Mesiar, R.: On the Chebyshev type inequality for seminormed fuzzy integrals. Applied Math. Letters 22 (2009), 1810–1815. | DOI | MR
[9] Ouyang, Y., Mesiar, R., Agahi, H.: An inequality related to Minkowski type for Sugeno integrals. Inform. Sci. 180 (2010), 2793–2801. | DOI | MR | Zbl
[10] Pap, E.: Null–Additive Set Functions. Kluwer, Dordrecht 1995. | MR | Zbl
[11] Roman-Flores, H., Flores–Franuli, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Inform. Sci. 177 (2007), 3192–3201. | DOI | MR
[12] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255–261. | DOI | MR | Zbl
[13] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571–587. | DOI | MR | Zbl
[14] Sugeno, M., Narukawa, Y., Murofushi, T.: Choquet integral and fuzzy measures on locally compact space. Fuzzy Sets and Systems 99, (1998), 2, 205–211. | MR | Zbl
[15] Wang, R.-S.: Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput., DOI 10.1007/212190/009/0358-y.
[16] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, Boston 2009. | MR | Zbl