The Choquet integral as Lebesgue integral and related inequalities
Kybernetika, Tome 46 (2010) no. 6, pp. 1098-1107 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The integral inequalities known for the Lebesgue integral are discussed in the framework of the Choquet integral. While the Jensen inequality was known to be valid for the Choquet integral without any additional constraints, this is not more true for the Cauchy, Minkowski, Hölder and other inequalities. For a fixed monotone measure, constraints on the involved functions sufficient to guarantee the validity of the discussed inequalities are given. Moreover, the comonotonicity of the considered functions is shown to be a sufficient constraint ensuring the validity of all discussed inequalities for the Choquet integral, independently of the underlying monotone measure.
The integral inequalities known for the Lebesgue integral are discussed in the framework of the Choquet integral. While the Jensen inequality was known to be valid for the Choquet integral without any additional constraints, this is not more true for the Cauchy, Minkowski, Hölder and other inequalities. For a fixed monotone measure, constraints on the involved functions sufficient to guarantee the validity of the discussed inequalities are given. Moreover, the comonotonicity of the considered functions is shown to be a sufficient constraint ensuring the validity of all discussed inequalities for the Choquet integral, independently of the underlying monotone measure.
Classification : 26D15, 28E10
Keywords: Choquet integral; comonotone functions; integral inequalities; monotone measure; modularity
@article{KYB_2010_46_6_a13,
     author = {Mesiar, Radko and Li, Jun and Pap, Endre},
     title = {The {Choquet} integral as {Lebesgue} integral and related inequalities},
     journal = {Kybernetika},
     pages = {1098--1107},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797430},
     zbl = {1210.28025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/}
}
TY  - JOUR
AU  - Mesiar, Radko
AU  - Li, Jun
AU  - Pap, Endre
TI  - The Choquet integral as Lebesgue integral and related inequalities
JO  - Kybernetika
PY  - 2010
SP  - 1098
EP  - 1107
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/
LA  - en
ID  - KYB_2010_46_6_a13
ER  - 
%0 Journal Article
%A Mesiar, Radko
%A Li, Jun
%A Pap, Endre
%T The Choquet integral as Lebesgue integral and related inequalities
%J Kybernetika
%D 2010
%P 1098-1107
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/
%G en
%F KYB_2010_46_6_a13
Mesiar, Radko; Li, Jun; Pap, Endre. The Choquet integral as Lebesgue integral and related inequalities. Kybernetika, Tome 46 (2010) no. 6, pp. 1098-1107. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a13/

[1] Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol. II, Elsevier Science 2002, pp. 1329–1379. | MR | Zbl

[2] Denneberg, D.: Non–Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994. | MR | Zbl

[3] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1953-54), 131–295. | MR

[4] Flores-Franulič, A., Roman-Flores, H.: A Chebyshev type inequality for fuzzy integrals. J. Appl. Math. Comput. 190 (2007), 1178–1184. | DOI | MR | Zbl

[5] Klement, E. P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Systems 18 (2010), 178–187. | DOI

[6] Mesiar, R., Ouyang, Y.: General Chebyshev type inequalities for Sugeno. Fuzzy Sets and Systems 160 (2009), 58–64. | MR | Zbl

[7] Narukawa, Y.: Distances defined by Choquet integral. In: Proc. IEEE Internat. Conference on Fuzzy Systems, London 2007, CD–ROM [#1159].

[8] Ouyang, Y., Mesiar, R.: On the Chebyshev type inequality for seminormed fuzzy integrals. Applied Math. Letters 22 (2009), 1810–1815. | DOI | MR

[9] Ouyang, Y., Mesiar, R., Agahi, H.: An inequality related to Minkowski type for Sugeno integrals. Inform. Sci. 180 (2010), 2793–2801. | DOI | MR | Zbl

[10] Pap, E.: Null–Additive Set Functions. Kluwer, Dordrecht 1995. | MR | Zbl

[11] Roman-Flores, H., Flores–Franuli, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Inform. Sci. 177 (2007), 3192–3201. | DOI | MR

[12] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255–261. | DOI | MR | Zbl

[13] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571–587. | DOI | MR | Zbl

[14] Sugeno, M., Narukawa, Y., Murofushi, T.: Choquet integral and fuzzy measures on locally compact space. Fuzzy Sets and Systems 99, (1998), 2, 205–211. | MR | Zbl

[15] Wang, R.-S.: Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput., DOI 10.1007/212190/009/0358-y.

[16] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, Boston 2009. | MR | Zbl