Quantum Bochner theorems and incompatible observables
Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.
A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.
Classification : 60B15, 81S30
Keywords: Bochner's Theorem; multiplier-nonnegative-definiteness; Wigner quasidensities; Pauli matrices
@article{KYB_2010_46_6_a10,
     author = {Hudson, Robin L.},
     title = {Quantum {Bochner} theorems and incompatible observables},
     journal = {Kybernetika},
     pages = {1061--1068},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797427},
     zbl = {1219.81175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a10/}
}
TY  - JOUR
AU  - Hudson, Robin L.
TI  - Quantum Bochner theorems and incompatible observables
JO  - Kybernetika
PY  - 2010
SP  - 1061
EP  - 1068
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a10/
LA  - en
ID  - KYB_2010_46_6_a10
ER  - 
%0 Journal Article
%A Hudson, Robin L.
%T Quantum Bochner theorems and incompatible observables
%J Kybernetika
%D 2010
%P 1061-1068
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a10/
%G en
%F KYB_2010_46_6_a10
Hudson, Robin L. Quantum Bochner theorems and incompatible observables. Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a10/

[1] Bochner, S.: Lectures on Fourier Integrals. Princeton University Press 1959. | MR | Zbl

[2] Cushen, C. D.: Quasi-characteristic functions of canonical observcables in quantum mechanics. Nottingham PhD Thesis 1970.

[3] Holevo, A. S.: Veroiatnostnye i statistichneskie aspekty kvantovoi teorii. Nauka, Moscow 1980, English translation Probabilistic and statistical aspects of quantum theory, North Holland 1982. | MR

[4] Hudson, R. L.: When is the Wigner quasi-probability density nonnegative? Rep. Math. Phys. 6 (1974), 249–252. | DOI | MR

[5] Gikhman, I. I., Skorohod, A. V.: Introduction to the Theory of Random Processes. Philadelphia 1969. | MR

[6] Neumann, J. von: Die Eindeutigkeit der Schrõdingerschen Operatoren. Math. Ann. 104 (1931), 570–578. | DOI | MR

[7] Pool, J. C. T.: Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7 (1966), 66–76. | DOI | MR | Zbl

[8] Rudin, W.: Fourier Analysis on Groups. Interscience New York 1962. | MR | Zbl

[9] Wigner, E.: On the quantum correction to thermodynamic equilibrium. Phys. Rev. 40 (1932), 749–759. | DOI