Keywords: lattice effect algebra; center; atom; MacNeille completion
@article{KYB_2010_46_6_a1,
author = {Kalina, Martin},
title = {Mac {Neille} completion of centers and centers of {Mac} {Neille} completions of lattice effect algebras},
journal = {Kybernetika},
pages = {935--947},
year = {2010},
volume = {46},
number = {6},
mrnumber = {2797418},
zbl = {1221.06010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/}
}
Kalina, Martin. Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras. Kybernetika, Tome 46 (2010) no. 6, pp. 935-947. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/
[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl
[2] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000. | MR
[3] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[4] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR
[5] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mountains Math. Publ. 15 (1998), 23–30. | MR | Zbl
[6] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915-923. | DOI | MR | Zbl
[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[8] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 4, 609–620. | MR | Zbl
[9] Kôpka, F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531. | DOI | MR
[10] Mosná, K.: About atoms in generalized efect algebras and their effect algebraic extensions. J. Electr. Engrg. 57 (2006), 7/s, 110–113.
[11] Mosná, K., Paseka, J., Riečanová, Z.: Order convergence and order and interval topologies on posets and lattice effect algebras. In: Proc. internat. seminar UNCERTAINTY 2008, Publishing House of STU 2008, pp. 45–62.
[12] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. Soft Computing, DOI: 10.1007/s00500-010-0561-7.
[13] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. | MR
[14] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys., 38 (1999), 3209–3220. | DOI | MR
[15] Riečanová, Z.: Generalization of blocks for D-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237. | DOI | MR
[16] Riečanová, Z.: Orthogonal sets in effect algebras. Demontratio Mathematica 34 (2001), 525–532. | Zbl
[17] Riečanová, Z.: Smearing of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511–1524. | DOI | MR
[18] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theor. Phys. 42 (2003), 1425–1433. | DOI | MR | Zbl
[19] Riečanová, Z.: Distributive atomic effect akgebras. Demontratio Mathematica 36 (2003), 247–259. | MR
[20] Riečanová, Z.: Lattice effect algebras densely embeddable into complete ones. Kybernetika, to appear.
[21] Riečanová, Z., Marinová, I.: Generalized homogenous, prelattice and MV-effect algebras. Kybernetika 41 (2005), 129–142. | MR