Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras
Kybernetika, Tome 46 (2010) no. 6, pp. 935-947 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If element $z$ of a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ is central, then the interval $[{\mathbf 0},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus$. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion $\hat{E}$ of $E$ which is its extension (i.e. $E$ is densely embeddable into $\hat{E}$) then it is possible to embed $E$ into a direct product of irreducible effect algebras. Thus $E$ inherits some of the properties of $\hat{E}$. For example, the existence of a state in $\hat{E}$ implies the existence of a state in $E$. In this context, a natural question arises if the MacNeille completion of the center of $E$ (denoted as ${\cal M}{\cal C}(C(E))$) is necessarily the same as the center of $\hat{E}$, i.e., if ${\cal M}{\cal C}(C(E))=C(\hat{E})$ is necessarily true. We show that the equality is not necessarily fulfilled. We find a necessary condition under which the equality may hold. Moreover, we show also that even the completeness of $C(E)$ and its bifullness in $E$ is not sufficient to guarantee the mentioned equality.
If element $z$ of a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ is central, then the interval $[{\mathbf 0},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus$. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion $\hat{E}$ of $E$ which is its extension (i.e. $E$ is densely embeddable into $\hat{E}$) then it is possible to embed $E$ into a direct product of irreducible effect algebras. Thus $E$ inherits some of the properties of $\hat{E}$. For example, the existence of a state in $\hat{E}$ implies the existence of a state in $E$. In this context, a natural question arises if the MacNeille completion of the center of $E$ (denoted as ${\cal M}{\cal C}(C(E))$) is necessarily the same as the center of $\hat{E}$, i.e., if ${\cal M}{\cal C}(C(E))=C(\hat{E})$ is necessarily true. We show that the equality is not necessarily fulfilled. We find a necessary condition under which the equality may hold. Moreover, we show also that even the completeness of $C(E)$ and its bifullness in $E$ is not sufficient to guarantee the mentioned equality.
Classification : 03G12, 03G27, 06B99
Keywords: lattice effect algebra; center; atom; MacNeille completion
@article{KYB_2010_46_6_a1,
     author = {Kalina, Martin},
     title = {Mac {Neille} completion of centers and centers of {Mac} {Neille} completions of lattice effect algebras},
     journal = {Kybernetika},
     pages = {935--947},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797418},
     zbl = {1221.06010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/}
}
TY  - JOUR
AU  - Kalina, Martin
TI  - Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras
JO  - Kybernetika
PY  - 2010
SP  - 935
EP  - 947
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/
LA  - en
ID  - KYB_2010_46_6_a1
ER  - 
%0 Journal Article
%A Kalina, Martin
%T Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras
%J Kybernetika
%D 2010
%P 935-947
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/
%G en
%F KYB_2010_46_6_a1
Kalina, Martin. Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras. Kybernetika, Tome 46 (2010) no. 6, pp. 935-947. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a1/

[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl

[2] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000. | MR

[3] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR

[4] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR

[5] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mountains Math. Publ. 15 (1998), 23–30. | MR | Zbl

[6] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915-923. | DOI | MR | Zbl

[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.

[8] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 4, 609–620. | MR | Zbl

[9] Kôpka, F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531. | DOI | MR

[10] Mosná, K.: About atoms in generalized efect algebras and their effect algebraic extensions. J. Electr. Engrg. 57 (2006), 7/s, 110–113.

[11] Mosná, K., Paseka, J., Riečanová, Z.: Order convergence and order and interval topologies on posets and lattice effect algebras. In: Proc. internat. seminar UNCERTAINTY 2008, Publishing House of STU 2008, pp. 45–62.

[12] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. Soft Computing, DOI: 10.1007/s00500-010-0561-7.

[13] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. | MR

[14] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys., 38 (1999), 3209–3220. | DOI | MR

[15] Riečanová, Z.: Generalization of blocks for D-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237. | DOI | MR

[16] Riečanová, Z.: Orthogonal sets in effect algebras. Demontratio Mathematica 34 (2001), 525–532. | Zbl

[17] Riečanová, Z.: Smearing of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511–1524. | DOI | MR

[18] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theor. Phys. 42 (2003), 1425–1433. | DOI | MR | Zbl

[19] Riečanová, Z.: Distributive atomic effect akgebras. Demontratio Mathematica 36 (2003), 247–259. | MR

[20] Riečanová, Z.: Lattice effect algebras densely embeddable into complete ones. Kybernetika, to appear.

[21] Riečanová, Z., Marinová, I.: Generalized homogenous, prelattice and MV-effect algebras. Kybernetika 41 (2005), 129–142. | MR