Keywords: geometric approach; manipulators; force/motion control
@article{KYB_2010_46_5_a3,
author = {Mercorelli, Paolo},
title = {Robust decoupling through algebraic output feedback in manipulation systems},
journal = {Kybernetika},
pages = {850--869},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2778924},
zbl = {1205.93032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a3/}
}
Mercorelli, Paolo. Robust decoupling through algebraic output feedback in manipulation systems. Kybernetika, Tome 46 (2010) no. 5, pp. 850-869. http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a3/
[1] Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey, 1992. | MR | Zbl
[2] Bhattacharyya, S. P.: Generalized controllability, controlled invariant subspace and parameter invariant control. SIAM J. Algebraic Discrete Methods 4 (1983), 4, 529–533. | DOI | MR
[3] Bicchi, A., Melchiorri, C., Balluchi, D.: On the mobility and manipulability of general multiple limb robots. IEEE Trans. Automat. Control 11 (1995), 2, 215–228. | DOI
[4] Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robotics and Automation 16 (2000), 4, 336–345. | DOI
[5] Bicchi, A., Prattichizzo, D., Mercorelli, P., Vicino, A.: Noninteracting force/motion control in general manipulation systems. In: Proc. 35th IEEE Conf. on Decision Control, CDC ’96, Kobe 1996.
[6] Isidori, A.: Nonlinear Control Systems: An Introduction. Springler-Verlag, Berlin 1989. | MR
[7] Marro, G., Barbagli, F.: The algebraic output feedback in the light of dual lattice structures. Kybernetika 35 (1999), 6, 693–706. | MR
[8] Mason, M. T., Salisbury, J. K.: Robot Hands and the Mechanics of Manipulation. The MIT Press, Cambridge 1985.
[9] Meirovitch, L.: Analytical Methods in Vibrations. Macmillan Pub. Co., Inc., New York 1967. | Zbl
[10] Mercorelli, P.: A subspace to describe grasping internal forces in robotic manipulation systems. J. Math. Control Sci. Appl. 1 (2007), 1, 209-216. | Zbl
[11] Mercorelli, P.: Geometric structures for the parameterization of non-interacting dynamics for multi-body mechanisms. Internat. J. Pure Appl. Math. 59 (2010), 3, 257–273. | MR | Zbl
[12] Mercorelli, P., Prattichizzo, D.: A geometric procedure for robust decoupling control of contact forces in robotic manipulation. Kybernetika 39 (2003), 4, 433-445. | MR | Zbl
[13] Prattichizzo, D., Bicchi, A.: Consistent task specification for manipulation systems with general kinematics. Amer. Soc. Mech. Engrg. 119 (1997), 760–767. | Zbl
[14] Prattichizzo, D., Bicchi, A.: Dynamic analysis of mobility and graspability of general manipulation systems. Trans. Robotic Automat. 14 (1998), 2, 251–218.
[15] Prattichizzo, D., Mercorelli, P.: Motion-decoupled internal force control in grasping with visco-elastic contacts. In: Proc. IEEE Conf. in Robotic and Automation, ICRA 2000, San Francisco 2000.
[16] Prattichizzo, D., Mercorelli, P.: On some geometric control properties of active suspension systems. Kybernetika 36 (2000), 5, 549–570. | MR
[17] Wonham, W. M.: Linear Multivariable Control: A Geometric Approach. Springer Verlag, New York 1979. | MR | Zbl
[18] Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robotics Automat. 12 (1996), 5, 816–824. | DOI