Keywords: nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence
@article{KYB_2010_46_5_a2,
author = {Kotta, \"Ulle and Kotta, Palle and Hal\'as, Miroslav},
title = {Reduction and transfer equivalence of nonlinear control systems: {Unification} and extension via pseudo-linear algebra},
journal = {Kybernetika},
pages = {831--849},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2778925},
zbl = {1205.93027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a2/}
}
TY - JOUR AU - Kotta, Ülle AU - Kotta, Palle AU - Halás, Miroslav TI - Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra JO - Kybernetika PY - 2010 SP - 831 EP - 849 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a2/ LA - en ID - KYB_2010_46_5_a2 ER -
%0 Journal Article %A Kotta, Ülle %A Kotta, Palle %A Halás, Miroslav %T Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra %J Kybernetika %D 2010 %P 831-849 %V 46 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a2/ %G en %F KYB_2010_46_5_a2
Kotta, Ülle; Kotta, Palle; Halás, Miroslav. Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra. Kybernetika, Tome 46 (2010) no. 5, pp. 831-849. http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a2/
[1] Abramov, S. A., Le, H. Q., Li, Z.: Univariate Ore polynomial rings in computer algebra. J. Math. Sci. 131 (2005), 5885–5903. | DOI | MR
[2] Aranda-Bricaire, E., Kotta, Ü., Moog, C. H.: Linearization of discrete-time systems. SIAM J. Control Optim. 34 (1996), 1999–2023. | DOI | MR | Zbl
[3] Bartosiewicz, Z., Kotta, Ü., Pawluszewicz, E., Wyrwas, M.: Differential rings associated with control systems on regular time scales. In: Proc. European Control Conference, Budapest 2009, pp. 242–247.
[4] Bourles, H.: Structural properties of discrete and continuous linear time-varying systems: a unified approach. In: Lecture Notes in Control and Inform. Sci. 311 (F. Lamnabhi-Lagarrigue et al., eds.), Springer-Verlag, London 2005, pp. 225–280. | MR | Zbl
[5] Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157 (1996), 3–33. | DOI | MR | Zbl
[6] Casagrande, D., Kotta, Ü., Wyrwas, M., Tõnso, M.: Transfer equivalence and reduction of nonlinear delta differential equations on homogeneous time scale. In: Proc. American Control Conference, Seattle 2008.
[7] Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16 (2005), 319–376. | DOI | MR | Zbl
[8] Chyzak, F., Quadrat, A., Robertz, D.: OREMODULES: A symbolic package for the study of multidimensional linear systems. In: Applications of time-delay systems. Lecture Notes in Control and Inform. Sci. 352 (J. Chiasson and J.-J. Loiseau, eds.), Springer-Verlag, Berlin 2007, pp. 233–264. | MR | Zbl
[9] Cohn, R. M.: Difference Algebra. Wiley-Interscience, New York 1965. | MR | Zbl
[10] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Lecture Notes in Control and Inform. Sci., Springer, London 2007. | MR | Zbl
[11] Delaleau, E.: Classical electrical engineering questions in the light of Fliess’s differential algebraic framework of non-linear control systems. Internat. J. Control 81, (2008), 3, 382–397. | DOI | MR | Zbl
[12] Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Contr. Lett. 15 (1990), 391–396. | DOI | MR | Zbl
[13] Fliess, M., Mounier, M.: Controllability and observability of linear delay systems: an algebraic approach. ESAIM Control, Optimization and Calculus of Variations 3, (1998), 301–314. | DOI | MR | Zbl
[14] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181–1190. | DOI | MR
[15] Halás, M., Kotta, Ü.: Pseudo-linear algebra: a powerful tool in unification of the study of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 684–689.
[16] Halás, M., Kotta, Ü., Li, Z., Yuan, H. Wang ,and C.: Submersive rational difference systems and formal accessibility. In: Proc. Internat. Symposium on Symbolic and Algebraic Computation, Seoul 2009.
[17] Johnson, K.: Kähler differentials and differential algebra. Ann. of Math. 89, (1969), 92–98. | DOI | MR | Zbl
[18] Kotta, Ü.: Irreducibility conditions for nonlinear input-output difference equations. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 3404–3408.
[19] Kotta, Ü.: Decomposition of discrete-time nonlinear control systems. Proc. Estonian Academy of Sci. Phys. Math. 54, (2005), 3, pp. 154–161. | MR | Zbl
[20] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Systems Control Lett. 58, (2009), 646–651. | DOI | MR | Zbl
[21] Kotta, Ü., Chowdhury, F.N., Nõmm, S.: On realizability of neural networks-based input-output models in the classical state-space form. Automatica 42 (2006), 1211–1216. | DOI | MR | Zbl
[22] Kotta, Ü., Tõnso, M.: Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems. In: Proc. 6th IFAC Symposium NOLCOS, Stuttgart 2004.
[23] Kotta, Ü., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica 37 (2001), 1771–1778. | DOI | Zbl
[24] McConnell, J. C., Robson, J. C.: Noncommutative noetherian rings. With the cooperation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987. | MR | Zbl
[25] Ore, O.: Theory of non-commutative polynomials. Ann. of Math. 32 (1933), 480–508. | DOI | MR | Zbl
[26] Perdon, A.-M., Moog, C. H., Conte, G.: The pole-zero structure of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 690–693.
[27] Toth, R.: Modeling and Identification of Linear Parameter-Varying Systems. PhD. thesis. Delft University of Technology 2008.
[28] Pommaret, J. F., Quadrat, A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247–260. | DOI | MR | Zbl
[29] Xia, X., Marques, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. | DOI | MR
[30] Ylinen, R.: Application of polynomial systems theory to nonlinear systems. In: Proc. 16th IFAC World Congress, Prague 2005.
[31] Zhang, C., Zheng, Y.: A polynomial approach to discrete-time nonlinear system controllability. Internat. J. Control 77 (2004), 491–477. | DOI | MR | Zbl
[32] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control 46 (2001), 1782–1788. | DOI | MR | Zbl