Keywords: realization; nonlinear system; differential ideal; differential form
@article{KYB_2010_46_5_a1,
author = {Zhang, Jiangfeng and Moog, Claude H. and Xia, Xiaohua},
title = {Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra},
journal = {Kybernetika},
pages = {799--830},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2778926},
zbl = {1205.93030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/}
}
TY - JOUR AU - Zhang, Jiangfeng AU - Moog, Claude H. AU - Xia, Xiaohua TI - Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra JO - Kybernetika PY - 2010 SP - 799 EP - 830 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/ LA - en ID - KYB_2010_46_5_a1 ER -
%0 Journal Article %A Zhang, Jiangfeng %A Moog, Claude H. %A Xia, Xiaohua %T Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra %J Kybernetika %D 2010 %P 799-830 %V 46 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/ %G en %F KYB_2010_46_5_a1
Zhang, Jiangfeng; Moog, Claude H.; Xia, Xiaohua. Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika, Tome 46 (2010) no. 5, pp. 799-830. http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/
[1] Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B.: A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control 40 (1995), 127–132. | DOI | MR
[2] Bartosiewicz, Z.: A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inform. Theory 2 (1985), 71–80. | DOI | Zbl
[3] Callier, F. M., Desoer, C. A.: Linear System Theory. Springer, New York 1991. | MR | Zbl
[4] Celle, F., Gauthier, J. P.: Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19 (1987), 227–237. | DOI | MR | Zbl
[5] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics. Elsevier Science Publishers, Amsterdam 1981. | MR
[6] Conte, G., Moog, C. H., Perdon, A. M.: Nonlinear Control Systems. Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.
[7] Conte, G., Perdon, A. M., Moog, C. H.: The differential field associated to a general analytic nonlinear dynamical system. IEEE Trans. Automat. Control 38 (1993), 1120–1124. | DOI | MR | Zbl
[8] Cox, D. A., Little, J. B., O’Shea, D.: Ideals, varieties, and algorithms. Second edition. Springer, New York 1996.
[9] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input output differential equations. In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149. | MR | Zbl
[10] Crouch, P. E., Lamnabhi-Lagarrigue, F.: Realizations of input output differential equations. In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992. | MR
[11] Crouch, P. E., Lamnabhi-Lagarrigue, F., Pinchon, D.: A realization algorithm for input output systems. Internat. J. Control 62 (1995), 941–960. | DOI | MR
[12] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control 5 (1995), 1–27. | MR | Zbl
[13] Benedetto, M. C. Di, Grizzle, J., Moog, C. H.: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658–672. | DOI | MR | Zbl
[14] Diop, S.: A state elimination procedure for nonlinear systems. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198. | MR | Zbl
[15] Diop, S., Fliess, F.: Nonlinear observability, identification, and persistent trajectories. In: Proc. 30th CDC, Brighton 1991.
[16] Fliess, M.: Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc. (N. S.) 2 (1980), 444–446. | DOI | MR | Zbl
[17] Fliess, M.: Some remarks on nonlinear invertibility and dynamic state feedback. In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986. | MR | Zbl
[18] Fliess, M.: A note on the invertibility of nonlinear input output systems. Syst. Control Lett. 8 (1986), 147–151. | DOI | MR
[19] Fliess, M.: Automatique et corps différentiels. Forum Math. 1 (1986), 227–238. | MR
[20] Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35 (1990), 994–1001. | DOI | MR | Zbl
[21] Fliess, M., Kupka, I.: Finiteness conditions for nonlinear input output differential systems. SIAM J. Control Optim. 21 (1983), 721–728. | DOI | MR
[22] Glad, S. T.: Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189. | MR | Zbl
[23] Halas, M., Huba, M.: Symbolic computation for nonlinear systems using quotients over skew polynomial ring. In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.
[24] Halas, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181–1190. | DOI | MR
[25] Hartshorne, R.: Algebraic Geometry. Springer, New York 1977. | MR | Zbl
[26] Hermann, R., Krener, A. J.: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728–740. | DOI | MR | Zbl
[27] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, New York 1995. | MR | Zbl
[28] Isidori, A., D’Alessandro, P., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control 13 (1974), 517–535. | MR
[29] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company, San Francisco 1974. | MR | Zbl
[30] Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18 (1980), 455–471. | DOI | MR | Zbl
[31] Jakubczyk, B.: Construction of formal and analytic realizations of nonlinear systems. In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982. | MR | Zbl
[32] Jakubczyk, B.: Realization theory for nonlinear systems, three approaches. In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986. | MR | Zbl
[33] Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris 1957. | MR | Zbl
[34] Kolchin, E. R.: Differential Algebra and Algebraic Groups. Academic Press, New York 1973. | MR | Zbl
[35] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Volume I. John Willey & Sons, New York 1963. | MR | Zbl
[36] Kotta, U., Kotta, P., Nomm, S., Tonso, M.: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.
[37] Kotta, U., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input output difference equations. Automatica 37 (2001), 1771–1778. | DOI | Zbl
[38] Kou, S. R., Elliot, D. L., Tarn, T. J.: Observability of nonlinear systems. Inform. Control 22 (1973), 89–99. | DOI | MR
[39] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216. | MR | Zbl
[40] Moog, C. H., Zheng, Y. F., Liu, P.: Input-output equivalence of nonlinear systems and their realizations. In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.
[41] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems. Springer, New York 1990. | MR
[42] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463–477. | DOI | MR | Zbl
[43] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34 (1933), 80–508. | Zbl
[44] Ritt, J. F.: Differential Algebra. American Mathematical Society, Providence 1950. | MR | Zbl
[45] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353–383. | MR | Zbl
[46] Schaft, A. J. van der: Observability and controllability for smooth nonlinear systems. SIAM J. Control Optim. 20 (1982), 338–354. | DOI | MR
[47] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239–275. | DOI | MR
[48] Schaft, A. J. van der: Transformations of nonlinear systems under external equivalence. In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43. | MR
[49] Schaft, A. J. van der: Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Syst. Control Lett. 12 (1989), 151–160. | DOI | MR
[50] Sontag, E. D.: Bilinear realizability is equivalent to existence of a singular affine differential i/o equation. Syst. Control Lett. 11 (1988), 190–198. | DOI | MR | Zbl
[51] Sussmann, H. S.: Existence and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory 10 (1977), 263–284. | DOI | MR
[52] Wang, Y., Sontag, E. D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30 (1992), 1126–1149. | DOI | MR | Zbl
[53] Wang, Y., Sontag, E. D.: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations. Forum Math. 4 (1992), 299–322. | DOI | MR | Zbl
[54] Wang, Y., Sontag, E. D.: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33 (1995), 1102–1126. | DOI | MR | Zbl
[55] Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. | DOI | MR
[56] Zheng, Y., Cao, L.: Transfer function description for nonlinear systems. J. East China Normal University (Natural Science) 2 (1995), 5–26. | MR