Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra
Kybernetika, Tome 46 (2010) no. 5, pp. 799-830 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.
In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.
Classification : 93B15, 93C10
Keywords: realization; nonlinear system; differential ideal; differential form
@article{KYB_2010_46_5_a1,
     author = {Zhang, Jiangfeng and Moog, Claude H. and Xia, Xiaohua},
     title = {Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra},
     journal = {Kybernetika},
     pages = {799--830},
     year = {2010},
     volume = {46},
     number = {5},
     mrnumber = {2778926},
     zbl = {1205.93030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/}
}
TY  - JOUR
AU  - Zhang, Jiangfeng
AU  - Moog, Claude H.
AU  - Xia, Xiaohua
TI  - Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra
JO  - Kybernetika
PY  - 2010
SP  - 799
EP  - 830
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/
LA  - en
ID  - KYB_2010_46_5_a1
ER  - 
%0 Journal Article
%A Zhang, Jiangfeng
%A Moog, Claude H.
%A Xia, Xiaohua
%T Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra
%J Kybernetika
%D 2010
%P 799-830
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/
%G en
%F KYB_2010_46_5_a1
Zhang, Jiangfeng; Moog, Claude H.; Xia, Xiaohua. Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika, Tome 46 (2010) no. 5, pp. 799-830. http://geodesic.mathdoc.fr/item/KYB_2010_46_5_a1/

[1] Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B.: A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control 40 (1995), 127–132. | DOI | MR

[2] Bartosiewicz, Z.: A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inform. Theory 2 (1985), 71–80. | DOI | Zbl

[3] Callier, F. M., Desoer, C. A.: Linear System Theory. Springer, New York 1991. | MR | Zbl

[4] Celle, F., Gauthier, J. P.: Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19 (1987), 227–237. | DOI | MR | Zbl

[5] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics. Elsevier Science Publishers, Amsterdam 1981. | MR

[6] Conte, G., Moog, C. H., Perdon, A. M.: Nonlinear Control Systems. Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.

[7] Conte, G., Perdon, A. M., Moog, C. H.: The differential field associated to a general analytic nonlinear dynamical system. IEEE Trans. Automat. Control 38 (1993), 1120–1124. | DOI | MR | Zbl

[8] Cox, D. A., Little, J. B., O’Shea, D.: Ideals, varieties, and algorithms. Second edition. Springer, New York 1996.

[9] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input output differential equations. In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149. | MR | Zbl

[10] Crouch, P. E., Lamnabhi-Lagarrigue, F.: Realizations of input output differential equations. In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992. | MR

[11] Crouch, P. E., Lamnabhi-Lagarrigue, F., Pinchon, D.: A realization algorithm for input output systems. Internat. J. Control 62 (1995), 941–960. | DOI | MR

[12] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control 5 (1995), 1–27. | MR | Zbl

[13] Benedetto, M. C. Di, Grizzle, J., Moog, C. H.: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658–672. | DOI | MR | Zbl

[14] Diop, S.: A state elimination procedure for nonlinear systems. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198. | MR | Zbl

[15] Diop, S., Fliess, F.: Nonlinear observability, identification, and persistent trajectories. In: Proc. 30th CDC, Brighton 1991.

[16] Fliess, M.: Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc. (N. S.) 2 (1980), 444–446. | DOI | MR | Zbl

[17] Fliess, M.: Some remarks on nonlinear invertibility and dynamic state feedback. In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986. | MR | Zbl

[18] Fliess, M.: A note on the invertibility of nonlinear input output systems. Syst. Control Lett. 8 (1986), 147–151. | DOI | MR

[19] Fliess, M.: Automatique et corps différentiels. Forum Math. 1 (1986), 227–238. | MR

[20] Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35 (1990), 994–1001. | DOI | MR | Zbl

[21] Fliess, M., Kupka, I.: Finiteness conditions for nonlinear input output differential systems. SIAM J. Control Optim. 21 (1983), 721–728. | DOI | MR

[22] Glad, S. T.: Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189. | MR | Zbl

[23] Halas, M., Huba, M.: Symbolic computation for nonlinear systems using quotients over skew polynomial ring. In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.

[24] Halas, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181–1190. | DOI | MR

[25] Hartshorne, R.: Algebraic Geometry. Springer, New York 1977. | MR | Zbl

[26] Hermann, R., Krener, A. J.: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728–740. | DOI | MR | Zbl

[27] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, New York 1995. | MR | Zbl

[28] Isidori, A., D’Alessandro, P., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control 13 (1974), 517–535. | MR

[29] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company, San Francisco 1974. | MR | Zbl

[30] Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18 (1980), 455–471. | DOI | MR | Zbl

[31] Jakubczyk, B.: Construction of formal and analytic realizations of nonlinear systems. In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982. | MR | Zbl

[32] Jakubczyk, B.: Realization theory for nonlinear systems, three approaches. In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986. | MR | Zbl

[33] Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris 1957. | MR | Zbl

[34] Kolchin, E. R.: Differential Algebra and Algebraic Groups. Academic Press, New York 1973. | MR | Zbl

[35] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Volume I. John Willey & Sons, New York 1963. | MR | Zbl

[36] Kotta, U., Kotta, P., Nomm, S., Tonso, M.: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.

[37] Kotta, U., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input output difference equations. Automatica 37 (2001), 1771–1778. | DOI | Zbl

[38] Kou, S. R., Elliot, D. L., Tarn, T. J.: Observability of nonlinear systems. Inform. Control 22 (1973), 89–99. | DOI | MR

[39] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216. | MR | Zbl

[40] Moog, C. H., Zheng, Y. F., Liu, P.: Input-output equivalence of nonlinear systems and their realizations. In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.

[41] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems. Springer, New York 1990. | MR

[42] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463–477. | DOI | MR | Zbl

[43] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34 (1933), 80–508. | Zbl

[44] Ritt, J. F.: Differential Algebra. American Mathematical Society, Providence 1950. | MR | Zbl

[45] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353–383. | MR | Zbl

[46] Schaft, A. J. van der: Observability and controllability for smooth nonlinear systems. SIAM J. Control Optim. 20 (1982), 338–354. | DOI | MR

[47] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239–275. | DOI | MR

[48] Schaft, A. J. van der: Transformations of nonlinear systems under external equivalence. In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43. | MR

[49] Schaft, A. J. van der: Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Syst. Control Lett. 12 (1989), 151–160. | DOI | MR

[50] Sontag, E. D.: Bilinear realizability is equivalent to existence of a singular affine differential i/o equation. Syst. Control Lett. 11 (1988), 190–198. | DOI | MR | Zbl

[51] Sussmann, H. S.: Existence and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory 10 (1977), 263–284. | DOI | MR

[52] Wang, Y., Sontag, E. D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30 (1992), 1126–1149. | DOI | MR | Zbl

[53] Wang, Y., Sontag, E. D.: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations. Forum Math. 4 (1992), 299–322. | DOI | MR | Zbl

[54] Wang, Y., Sontag, E. D.: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33 (1995), 1102–1126. | DOI | MR | Zbl

[55] Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. | DOI | MR

[56] Zheng, Y., Cao, L.: Transfer function description for nonlinear systems. J. East China Normal University (Natural Science) 2 (1995), 5–26. | MR