Keywords: equilibrium problems with complementarity constraints; homotopy; C-stationarity
@article{KYB_2010_46_4_a9,
author = {\v{C}ervinka, Michal},
title = {On computation of {C-stationary} points for equilibrium problems with linear complementarity constraints via homotopy method},
journal = {Kybernetika},
pages = {730--753},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722098},
zbl = {1226.90111},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/}
}
TY - JOUR AU - Červinka, Michal TI - On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method JO - Kybernetika PY - 2010 SP - 730 EP - 753 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/ LA - en ID - KYB_2010_46_4_a9 ER -
Červinka, Michal. On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method. Kybernetika, Tome 46 (2010) no. 4, pp. 730-753. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/
[1] Jongen, H. T., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht 2000. | MR | Zbl
[2] Leyffer, S., Munson, T.: A globally convergent filter method for MPECs. Preprint ANL/MCS-P1457-0907 (2007).
[3] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996. | MR | Zbl
[4] Murty, K. G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman-Verlag 1988. | MR | Zbl
[5] Ralph, D., Stein, O.: The C-index: a new stability concept for quadratic programs with complementarity constraints, preprint 2010 (a revised version of Homotopy methods for quadratic programs with complementarity constraints. Preprint No. 120, Department of Mathematics - C, RWTH Aachen University 2006). | MR
[6] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22. | DOI | MR
[7] Scholtes, S., Stöhr, M.: How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Math. Oper. Res. 26 (2001), 851–863. | DOI | MR
[8] Su, C.-L.: Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms and Applications. PhD Thesis, Department of Management Science and Engineering, Stanford University 2005.