On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method
Kybernetika, Tome 46 (2010) no. 4, pp. 730-753 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper we consider EPCCs with convex quadratic objective functions and one set of complementarity constraints. For this class of problems we propose a possible generalization of the homotopy method for finding stationary points of MPCCs. We analyze the difficulties which arise from this generalization. Numerical results illustrate the performance for randomly generated test problems.
In the paper we consider EPCCs with convex quadratic objective functions and one set of complementarity constraints. For this class of problems we propose a possible generalization of the homotopy method for finding stationary points of MPCCs. We analyze the difficulties which arise from this generalization. Numerical results illustrate the performance for randomly generated test problems.
Classification : 90C20, 90C31, 90C33
Keywords: equilibrium problems with complementarity constraints; homotopy; C-stationarity
@article{KYB_2010_46_4_a9,
     author = {\v{C}ervinka, Michal},
     title = {On computation of {C-stationary} points for equilibrium problems with linear complementarity constraints via homotopy method},
     journal = {Kybernetika},
     pages = {730--753},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722098},
     zbl = {1226.90111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/}
}
TY  - JOUR
AU  - Červinka, Michal
TI  - On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method
JO  - Kybernetika
PY  - 2010
SP  - 730
EP  - 753
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/
LA  - en
ID  - KYB_2010_46_4_a9
ER  - 
%0 Journal Article
%A Červinka, Michal
%T On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method
%J Kybernetika
%D 2010
%P 730-753
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/
%G en
%F KYB_2010_46_4_a9
Červinka, Michal. On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method. Kybernetika, Tome 46 (2010) no. 4, pp. 730-753. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a9/

[1] Jongen, H. T., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht 2000. | MR | Zbl

[2] Leyffer, S., Munson, T.: A globally convergent filter method for MPECs. Preprint ANL/MCS-P1457-0907 (2007).

[3] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996. | MR | Zbl

[4] Murty, K. G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman-Verlag 1988. | MR | Zbl

[5] Ralph, D., Stein, O.: The C-index: a new stability concept for quadratic programs with complementarity constraints, preprint 2010 (a revised version of Homotopy methods for quadratic programs with complementarity constraints. Preprint No. 120, Department of Mathematics - C, RWTH Aachen University 2006). | MR

[6] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22. | DOI | MR

[7] Scholtes, S., Stöhr, M.: How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Math. Oper. Res. 26 (2001), 851–863. | DOI | MR

[8] Su, C.-L.: Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms and Applications. PhD Thesis, Department of Management Science and Engineering, Stanford University 2005.