Keywords: linear optimization; interior point methods; long step algorithms; large neighborhood; polynomial complexity
@article{KYB_2010_46_4_a8,
author = {Salahi, Maziar},
title = {An adaptive long step interior point algorithm for linear optimization},
journal = {Kybernetika},
pages = {722--729},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722097},
zbl = {1203.90110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/}
}
Salahi, Maziar. An adaptive long step interior point algorithm for linear optimization. Kybernetika, Tome 46 (2010) no. 4, pp. 722-729. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/
[1] Mehrotra, S.: On the implementation of a (primal-dual) interior point method. SIAM J. Optim. 2 (1992), 575–601. | DOI | MR | Zbl
[2] Mizuno, S., Todd, M. J., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res. 18 (1993), 4, 964–981. | DOI | MR | Zbl
[3] Potra, F. A.: A superliner convergent predictor–corrector method for degenerate LCP in a wide neighborhood of the central path with $O(\sqrt{n}L)$-iteration complexity. Math. Program. Ser. A 100 (2004), 2, 317–337. | DOI | MR
[4] Roos, C., Terlaky, T., Vial, J. P.: Interior Ooint Algorithms for Linear Optimization. Second edition. Springer Science, 2005.
[5] Salahi, M., Terlaky, T.: A hybrid adaptive algorithm for linear optimization. Asia-Pacific J. Oper. Res. 26 (2009), 2, 235–256. | DOI | MR | Zbl
[6] Sonnevend, G.: An “analytic center" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Proc. 12th IFIP Conference System Modeling and Optimization (A. Prékopa, J. Szelezsán, and B. Strazicky, eds.), Budapest 1985. Lecture Notes in Control and Information Sciences, pp. 866–876. Springer Verlag, Berlin, 1986. | MR
[7] Wright, S. J.: Primal-dual Interior-point Methods. SIAM, Philadelphia 1997. | MR | Zbl
[8] Zhao, G.: Interior–point algorithms for linear complementarity problems based on large neighborhoods of the central path. SIAM J. Optim. 8 (1998), 397-�413. | DOI | MR | Zbl