An adaptive long step interior point algorithm for linear optimization
Kybernetika, Tome 46 (2010) no. 4, pp. 722-729 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that a large neighborhood interior point algorithm for linear optimization performs much better in implementation than its small neighborhood counterparts. One of the key elements of interior point algorithms is how to update the barrier parameter. The main goal of this paper is to introduce an ``adaptive'' long step interior-point algorithm in a large neighborhood of central path using the classical logarithmic barrier function having $O(n\operatorname{log}\frac{(x^0)^Ts^0}{\epsilon})$ iteration complexity analogous to the classical long step algorithms. Preliminary encouraging numerical results are reported.
It is well known that a large neighborhood interior point algorithm for linear optimization performs much better in implementation than its small neighborhood counterparts. One of the key elements of interior point algorithms is how to update the barrier parameter. The main goal of this paper is to introduce an ``adaptive'' long step interior-point algorithm in a large neighborhood of central path using the classical logarithmic barrier function having $O(n\operatorname{log}\frac{(x^0)^Ts^0}{\epsilon})$ iteration complexity analogous to the classical long step algorithms. Preliminary encouraging numerical results are reported.
Classification : 90C05, 90C51
Keywords: linear optimization; interior point methods; long step algorithms; large neighborhood; polynomial complexity
@article{KYB_2010_46_4_a8,
     author = {Salahi, Maziar},
     title = {An adaptive long step interior point algorithm for linear optimization},
     journal = {Kybernetika},
     pages = {722--729},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722097},
     zbl = {1203.90110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/}
}
TY  - JOUR
AU  - Salahi, Maziar
TI  - An adaptive long step interior point algorithm for linear optimization
JO  - Kybernetika
PY  - 2010
SP  - 722
EP  - 729
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/
LA  - en
ID  - KYB_2010_46_4_a8
ER  - 
%0 Journal Article
%A Salahi, Maziar
%T An adaptive long step interior point algorithm for linear optimization
%J Kybernetika
%D 2010
%P 722-729
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/
%G en
%F KYB_2010_46_4_a8
Salahi, Maziar. An adaptive long step interior point algorithm for linear optimization. Kybernetika, Tome 46 (2010) no. 4, pp. 722-729. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a8/

[1] Mehrotra, S.: On the implementation of a (primal-dual) interior point method. SIAM J. Optim. 2 (1992), 575–601. | DOI | MR | Zbl

[2] Mizuno, S., Todd, M. J., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res. 18 (1993), 4, 964–981. | DOI | MR | Zbl

[3] Potra, F. A.: A superliner convergent predictor–corrector method for degenerate LCP in a wide neighborhood of the central path with $O(\sqrt{n}L)$-iteration complexity. Math. Program. Ser. A 100 (2004), 2, 317–337. | DOI | MR

[4] Roos, C., Terlaky, T., Vial, J. P.: Interior Ooint Algorithms for Linear Optimization. Second edition. Springer Science, 2005.

[5] Salahi, M., Terlaky, T.: A hybrid adaptive algorithm for linear optimization. Asia-Pacific J. Oper. Res. 26 (2009), 2, 235–256. | DOI | MR | Zbl

[6] Sonnevend, G.: An “analytic center" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Proc. 12th IFIP Conference System Modeling and Optimization (A. Prékopa, J. Szelezsán, and B. Strazicky, eds.), Budapest 1985. Lecture Notes in Control and Information Sciences, pp. 866–876. Springer Verlag, Berlin, 1986. | MR

[7] Wright, S. J.: Primal-dual Interior-point Methods. SIAM, Philadelphia 1997. | MR | Zbl

[8] Zhao, G.: Interior–point algorithms for linear complementarity problems based on large neighborhoods of the central path. SIAM J. Optim. 8 (1998), 397-�413. | DOI | MR | Zbl