Keywords: hybrid algorithm; differential evolution(DE); chaotic pattern search; global optimization
@article{KYB_2010_46_4_a6,
author = {He, Yaoyao and Zhou, Jianzhong and Lu, Ning and Qin, Hui and Lu, Youlin},
title = {Differential evolution algorithm combined with chaotic pattern search},
journal = {Kybernetika},
pages = {684--696},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722095},
zbl = {1203.65090},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a6/}
}
TY - JOUR AU - He, Yaoyao AU - Zhou, Jianzhong AU - Lu, Ning AU - Qin, Hui AU - Lu, Youlin TI - Differential evolution algorithm combined with chaotic pattern search JO - Kybernetika PY - 2010 SP - 684 EP - 696 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a6/ LA - en ID - KYB_2010_46_4_a6 ER -
He, Yaoyao; Zhou, Jianzhong; Lu, Ning; Qin, Hui; Lu, Youlin. Differential evolution algorithm combined with chaotic pattern search. Kybernetika, Tome 46 (2010) no. 4, pp. 684-696. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a6/
[1] Audet, C., Dennis, J. E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11 (2001), 3, 573–594. | DOI | MR
[2] Cai, J. J., Ma, X. Q., Li, X.: Chaotic ant swarm optimization to economic dispatch. Electron. Power Systems Research 77 (2007), 10, 1373–1380. | DOI
[3] Fan, H. Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. J. Global Optim. 27 (2003), 1, 105–129. | DOI | MR | Zbl
[4] HART, W. E.: Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization. IEEE Trans. Evol. Comput. 5 (2001), 4, 388–397. | DOI
[5] He, Y. Y., Zhou, J. Z., Li, C. S.: A precise chaotic particle swarm optimization algorithm based on improved tent map. ICNC 7 (2008), 569–573.
[6] He, Y. Y., Zhou, J. Z., Xiang, X. Q.: Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42 (2009), 5, 3169–3176. | DOI | Zbl
[7] He, Y. Y., Zhou, J. Z., Qin, H.: Flood disaster classification based on fuzzy clustering iterative model and modified differential evolution algorithm. FSKD 3 (2009), 85–89.
[8] Ji, M. J., Tang, H. W.: Application of chaos in simulated annealing. optimization. Chaos Solitons Fractals 21 (2004), 933–941. | DOI | Zbl
[9] Kaelo, P., Ali, M. M.: A numerical study of some modified differential evolution algorithms. European J. Oper. Res. 169 (2006), 1176–1184. | DOI | MR | Zbl
[10] Kennedy, J., Eberhan, R. J.: Particle swarm optimization. In: IEEE Internat. Conf on Neural Networks 1995, Vol. 4, pp. 1942–1948.
[11] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley 1995.
[12] Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997), 341–359. | DOI | MR | Zbl
[13] Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. University of California, Berkeley 2006.
[14] Tavazoei, M. S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 187 (2007), 1076–1085. | DOI | MR | Zbl
[15] Xiang, T., Liao, X. F., Wong, K. W.: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl. Math. Comput. 190 (2007), 1637–1645. | DOI | MR | Zbl
[16] Yang, D. X., Li, G., Cheng, G. D.: On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34 (2007), 1366–1375. | DOI
[17] Yuan, X. H., Yuan, Y. B., Zhang, Y. C.: A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math. Comput. Simul. 59 (2002), 4, 319–327. | DOI | MR | Zbl
[18] Yuan, X. F., Wang, Y. N., Wu, L. H.: Pattern search algorithm using chaos and its application. J. of Hunan University (Natural Sciences) 34 (2007), 9, 30-33. | Zbl
[19] Zhang, L., Zhang, C. J.: Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers. Kybernetika 44 (2008), 1, 35–42. | MR | Zbl
[20] Zhu, Z. L., Li, S. P., Yu, H.: A new approach to generalized chaos synchronization based on the stability of the error System. Kybernetika 44 (2008), 4, 492–500. | MR | Zbl