Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function
Kybernetika, Tome 46 (2010) no. 4, pp. 665-683 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work is concerned with the eigenvalue problem for a monotone and homogenous self-mapping $f$ of a finite dimensional positive cone. Paralleling the classical analysis of the (linear) Perron–Frobenius theorem, a verifiable communication condition is formulated in terms of the successive compositions of $f$, and under such a condition it is shown that the upper eigenspaces of $f$ are bounded in the projective sense, a property that yields the existence of a nonlinear eigenvalue as well as the projective boundedness of the corresponding eigenspace. The relation of the communication property studied in this note with the idea of indecomposability is briefly discussed.
This work is concerned with the eigenvalue problem for a monotone and homogenous self-mapping $f$ of a finite dimensional positive cone. Paralleling the classical analysis of the (linear) Perron–Frobenius theorem, a verifiable communication condition is formulated in terms of the successive compositions of $f$, and under such a condition it is shown that the upper eigenspaces of $f$ are bounded in the projective sense, a property that yields the existence of a nonlinear eigenvalue as well as the projective boundedness of the corresponding eigenspace. The relation of the communication property studied in this note with the idea of indecomposability is briefly discussed.
Classification : 47H07, 47H09, 47J10
Keywords: projectively bounded and invariant sets; generalized Perron–Frobenius conditions; nonlinear eigenvalue; Collatz–Wielandt relations
@article{KYB_2010_46_4_a5,
     author = {Cavazos-Cadena, Rolando},
     title = {Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function},
     journal = {Kybernetika},
     pages = {665--683},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722094},
     zbl = {1208.47059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/}
}
TY  - JOUR
AU  - Cavazos-Cadena, Rolando
TI  - Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function
JO  - Kybernetika
PY  - 2010
SP  - 665
EP  - 683
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/
LA  - en
ID  - KYB_2010_46_4_a5
ER  - 
%0 Journal Article
%A Cavazos-Cadena, Rolando
%T Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function
%J Kybernetika
%D 2010
%P 665-683
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/
%G en
%F KYB_2010_46_4_a5
Cavazos-Cadena, Rolando. Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function. Kybernetika, Tome 46 (2010) no. 4, pp. 665-683. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/

[1] Akian, M., Gaubert, S.: Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. 52 (2003), 2, 637–679. | DOI | MR | Zbl

[2] Akian, M., Gaubert, S., Lemmens, B., Nussbaum, R.: Iteration of order preserving subhomogeneous maps on a cone. Math. Proc. Camb. Phil. Soc. 140 (2006), 157–176. | DOI | MR | Zbl

[3] Cavazos–Cadena, R., Hernández–Hernández, D.: Poisson equations associated with a homogeneous and monotone function: necessary and sufficient conditions for a solution in a weakly convex case. Nonlinear Anal.: Theory, Methods and Appl. 72 (2010), 3303–3313. | MR | Zbl

[4] Dellacherie, C.: Modèles simples de la théorie du potentiel non-linéaire. Lecture Notes in Math. 1426, pp. 52–104, Springer 1990. | MR

[5] Gaubert, S., Gunawardena, J.: The Perron–Frobenius theorem for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356 (2004), 12, 4931–4950. | DOI | MR | Zbl

[6] Gunawardena, J.: From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293 (2003), 141–167. | DOI | MR

[7] Kolokoltsov, V. N.: Nonexpansive maps and option pricing theory. Kybernetika 34 (1998), 713–724. | MR

[8] Lemmens, B., Scheutzow, M.: On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25 (2005), 3, 861–871. | MR

[9] Minc, H.: Nonnegative Matrices. Wiley, New York 1988. | MR | Zbl

[10] Nussbaum, R. D.: Hilbert’s projective metric and iterated nonlinear maps. Memoirs of the AMS 75 (1988), 391. | DOI | MR | Zbl

[11] Nussbaum, R. D.: Iterated nonlinear maps and Hilbert’s projective metric. Memoirs of the AMS 79 (1989), 401. | DOI | MR | Zbl

[12] Seneta, E.: Non-negative Matrices and Markov Chains. Springer, New York 1980. | MR

[13] Zijm, W. H. M.: Generalized eigenvectors and sets of nonnegative matrices. inear Alg. Appl. 59 (1984), 91–113. | MR | Zbl