Keywords: projectively bounded and invariant sets; generalized Perron–Frobenius conditions; nonlinear eigenvalue; Collatz–Wielandt relations
@article{KYB_2010_46_4_a5,
author = {Cavazos-Cadena, Rolando},
title = {Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function},
journal = {Kybernetika},
pages = {665--683},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722094},
zbl = {1208.47059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/}
}
Cavazos-Cadena, Rolando. Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function. Kybernetika, Tome 46 (2010) no. 4, pp. 665-683. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a5/
[1] Akian, M., Gaubert, S.: Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. 52 (2003), 2, 637–679. | DOI | MR | Zbl
[2] Akian, M., Gaubert, S., Lemmens, B., Nussbaum, R.: Iteration of order preserving subhomogeneous maps on a cone. Math. Proc. Camb. Phil. Soc. 140 (2006), 157–176. | DOI | MR | Zbl
[3] Cavazos–Cadena, R., Hernández–Hernández, D.: Poisson equations associated with a homogeneous and monotone function: necessary and sufficient conditions for a solution in a weakly convex case. Nonlinear Anal.: Theory, Methods and Appl. 72 (2010), 3303–3313. | MR | Zbl
[4] Dellacherie, C.: Modèles simples de la théorie du potentiel non-linéaire. Lecture Notes in Math. 1426, pp. 52–104, Springer 1990. | MR
[5] Gaubert, S., Gunawardena, J.: The Perron–Frobenius theorem for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356 (2004), 12, 4931–4950. | DOI | MR | Zbl
[6] Gunawardena, J.: From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293 (2003), 141–167. | DOI | MR
[7] Kolokoltsov, V. N.: Nonexpansive maps and option pricing theory. Kybernetika 34 (1998), 713–724. | MR
[8] Lemmens, B., Scheutzow, M.: On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25 (2005), 3, 861–871. | MR
[9] Minc, H.: Nonnegative Matrices. Wiley, New York 1988. | MR | Zbl
[10] Nussbaum, R. D.: Hilbert’s projective metric and iterated nonlinear maps. Memoirs of the AMS 75 (1988), 391. | DOI | MR | Zbl
[11] Nussbaum, R. D.: Iterated nonlinear maps and Hilbert’s projective metric. Memoirs of the AMS 79 (1989), 401. | DOI | MR | Zbl
[12] Seneta, E.: Non-negative Matrices and Markov Chains. Springer, New York 1980. | MR
[13] Zijm, W. H. M.: Generalized eigenvectors and sets of nonnegative matrices. inear Alg. Appl. 59 (1984), 91–113. | MR | Zbl