@article{KYB_2010_46_4_a4,
author = {Hu, Guang-Da and Zhu, Qiao},
title = {Bounds of modulus of eigenvalues based on {Stein} equation},
journal = {Kybernetika},
pages = {655--664},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722093},
zbl = {1205.15031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/}
}
Hu, Guang-Da; Zhu, Qiao. Bounds of modulus of eigenvalues based on Stein equation. Kybernetika, Tome 46 (2010) no. 4, pp. 655-664. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/
[1] Bartels, R. H., Stewart, G. W.: Solution of the matrix equation $AX+XB=C$. Comm. ACM 15 (1972), 820–826. | DOI
[2] Chen, M. Q., Li, X. Z.: An estimation of the spectral radius of a product of block matrices. Linear Algebra Appl. 379 (2004), 267–275. | MR | Zbl
[3] Golub, G. H., Loan, C. F. Van: Matrix Computations Third edition. Johns Hopkins University Press, Baltimore 1996. | MR
[4] Hall, C. A., Porsching, T. A.: Bounds for the maximal eigenvalue of a nonnegative irreducible matrix. Duke Math. J. 36 (1969), 159–164. | MR
[5] Hu, G. D., Hu, G. D.: A relation between the weighted logarithmic norm of matrix and Lyapunov equation. BIT 40 (2000), 506–510.
[6] Hu, G. D., Liu, M. Z.: The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390 (2004), 145–154. | MR | Zbl
[7] Hu, G. D., Liu, M. Z.: Properties of the weighted logarithmic matrix norms. IMA J. Math. Contr. Inform. 25 (2008), 75–84. | MR | Zbl
[8] Huang, T. H., Ran, R. S.: A simple estimation for the spectral radius of block H-matrics. J. Comput. Appl. Math. 177 (2005), 455–459. | DOI | MR
[9] Lancaster, P.: The Theory of Matrices with Application. Academic Press, Orlando 1985. | MR
[10] Lu, L. Z.: Perron complement and Perron root. Linear Algebra Appl. 341 (2002), 239–248. | DOI | MR | Zbl
[11] Lu, L. Z., Ng, M. K.: Localization of Perron roots. Linear Algebra its Appl. 392 (2004), 103–107. | MR | Zbl
[12] Mond, B., Pecaric, J. E.: On an inequality for spectral radius. Linear and Multilinear Algebra 20 (1996), 203–206. | MR | Zbl
[13] Yang, Z. M.: The block smoothing mehtod for estimationg the spectral radius of a nonnegative matrix. Appl. Math. Comput. 185 (2007), 266–271. | DOI | MR
[14] Zhu, Q., Hu, G. D., Zeng, L.: Estimating the spectral radius of a real matrix by discrete Lyapunov equation. J. Difference Equations Appl. To appear.