Bounds of modulus of eigenvalues based on Stein equation
Kybernetika, Tome 46 (2010) no. 4, pp. 655-664 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and the maximal modulus of eigenvalues.
This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and the maximal modulus of eigenvalues.
Classification : 65F10, 65F15
Keywords: eigenvalues; lower and upper bounds; Stein equation
@article{KYB_2010_46_4_a4,
     author = {Hu, Guang-Da and Zhu, Qiao},
     title = {Bounds of modulus of eigenvalues based on {Stein} equation},
     journal = {Kybernetika},
     pages = {655--664},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722093},
     zbl = {1205.15031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/}
}
TY  - JOUR
AU  - Hu, Guang-Da
AU  - Zhu, Qiao
TI  - Bounds of modulus of eigenvalues based on Stein equation
JO  - Kybernetika
PY  - 2010
SP  - 655
EP  - 664
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/
LA  - en
ID  - KYB_2010_46_4_a4
ER  - 
%0 Journal Article
%A Hu, Guang-Da
%A Zhu, Qiao
%T Bounds of modulus of eigenvalues based on Stein equation
%J Kybernetika
%D 2010
%P 655-664
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/
%G en
%F KYB_2010_46_4_a4
Hu, Guang-Da; Zhu, Qiao. Bounds of modulus of eigenvalues based on Stein equation. Kybernetika, Tome 46 (2010) no. 4, pp. 655-664. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a4/

[1] Bartels, R. H., Stewart, G. W.: Solution of the matrix equation $AX+XB=C$. Comm. ACM 15 (1972), 820–826. | DOI

[2] Chen, M. Q., Li, X. Z.: An estimation of the spectral radius of a product of block matrices. Linear Algebra Appl. 379 (2004), 267–275. | MR | Zbl

[3] Golub, G. H., Loan, C. F. Van: Matrix Computations Third edition. Johns Hopkins University Press, Baltimore 1996. | MR

[4] Hall, C. A., Porsching, T. A.: Bounds for the maximal eigenvalue of a nonnegative irreducible matrix. Duke Math. J. 36 (1969), 159–164. | MR

[5] Hu, G. D., Hu, G. D.: A relation between the weighted logarithmic norm of matrix and Lyapunov equation. BIT 40 (2000), 506–510.

[6] Hu, G. D., Liu, M. Z.: The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390 (2004), 145–154. | MR | Zbl

[7] Hu, G. D., Liu, M. Z.: Properties of the weighted logarithmic matrix norms. IMA J. Math. Contr. Inform. 25 (2008), 75–84. | MR | Zbl

[8] Huang, T. H., Ran, R. S.: A simple estimation for the spectral radius of block H-matrics. J. Comput. Appl. Math. 177 (2005), 455–459. | DOI | MR

[9] Lancaster, P.: The Theory of Matrices with Application. Academic Press, Orlando 1985. | MR

[10] Lu, L. Z.: Perron complement and Perron root. Linear Algebra Appl. 341 (2002), 239–248. | DOI | MR | Zbl

[11] Lu, L. Z., Ng, M. K.: Localization of Perron roots. Linear Algebra its Appl. 392 (2004), 103–107. | MR | Zbl

[12] Mond, B., Pecaric, J. E.: On an inequality for spectral radius. Linear and Multilinear Algebra 20 (1996), 203–206. | MR | Zbl

[13] Yang, Z. M.: The block smoothing mehtod for estimationg the spectral radius of a nonnegative matrix. Appl. Math. Comput. 185 (2007), 266–271. | DOI | MR

[14] Zhu, Q., Hu, G. D., Zeng, L.: Estimating the spectral radius of a real matrix by discrete Lyapunov equation. J. Difference Equations Appl. To appear.