On central atoms of Archimedean atomic lattice effect algebras
Kybernetika, Tome 46 (2010) no. 4, pp. 609-620 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If element $z$ of a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ is central, then the interval $[{\mathbf 0},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus$. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra $E$. We show that there exists a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ with atomic $C(E)$ which is not a bifull sublattice of $E$. Moreover, we show that also $B(E)$, the center of compatibility, may not be a bifull sublattice of $E$.
If element $z$ of a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ is central, then the interval $[{\mathbf 0},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus$. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra $E$. We show that there exists a lattice effect algebra $(E,\oplus, {\mathbf 0}, {\mathbf 1})$ with atomic $C(E)$ which is not a bifull sublattice of $E$. Moreover, we show that also $B(E)$, the center of compatibility, may not be a bifull sublattice of $E$.
Classification : 03G12, 03G27, 06B99
Keywords: lattice effect algebra; center; atom; bifullness
@article{KYB_2010_46_4_a2,
     author = {Kalina, Martin},
     title = {On central atoms of {Archimedean} atomic lattice effect algebras},
     journal = {Kybernetika},
     pages = {609--620},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722091},
     zbl = {1214.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a2/}
}
TY  - JOUR
AU  - Kalina, Martin
TI  - On central atoms of Archimedean atomic lattice effect algebras
JO  - Kybernetika
PY  - 2010
SP  - 609
EP  - 620
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a2/
LA  - en
ID  - KYB_2010_46_4_a2
ER  - 
%0 Journal Article
%A Kalina, Martin
%T On central atoms of Archimedean atomic lattice effect algebras
%J Kybernetika
%D 2010
%P 609-620
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a2/
%G en
%F KYB_2010_46_4_a2
Kalina, Martin. On central atoms of Archimedean atomic lattice effect algebras. Kybernetika, Tome 46 (2010) no. 4, pp. 609-620. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a2/

[1] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000. | MR

[2] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR

[3] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR

[4] Gudder, S. P.: Sharply dominating effect algebras, Tatra Mountains Math. Publ. 15 (1998), 23–30. | MR

[5] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915–923. | DOI | MR | Zbl

[6] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.

[7] Kôpka, F.: Compatibility in D-posets. Interernat. J. Theor. Phys. 34 (1995), 1525–1531. | DOI | MR

[8] Mosná, K.: About atoms in generalized efect algebras and their effect algebraic extensions. J. Electr. Engrg. 57 (2006), 7/s, 110–113.

[9] Mosná, K., Paseka, J., Riečanová, Z.: Order convergence and order and interval topologies on posets and lattice effect algebras. In: UNCERTAINTY2008, Proc. Internat. Seminar, Publishing House of STU 2008, pp. 45–62. | MR

[10] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. Soft Computing, to appear.

[11] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. | MR

[12] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys. 38 (1999), 3209–3220. | DOI | MR

[13] Riečanová, Z.: Generalization of blocks for D-lattices and lattice ordered effect algebras Internat. J. Theor. Phys. 39 (2000), 231–237. | DOI | MR

[14] Riečanová, Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525–532. | MR | Zbl

[15] Riečanová, Z.: Smearing of states defined on sharp elements onto effect algebras. Interernat. J. Theor. Phys. 41 (2002), 1511–1524. | DOI | MR

[16] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Interernat. J. Theor. Phys. 42 (2003), 1425–1433. | DOI | MR | Zbl

[17] Riečanová, Z.: Distributive atomic effect akgebras. Demonstratio Math. 36 (2003), 247–259. | MR

[18] Riečanová, Z., Marinová, I.: Generalized homogenous, prelattice and MV-effect algebras. Kybernetika 41 (2005), 129–142. | MR