Keywords: sequential analysis; discrete-time stochastic process; dependent observations; statistical decision problem; Bayes decision; randomized stopping time; optimal stopping rule; existence and uniqueness of optimal sequential decision procedure
@article{KYB_2010_46_4_a10,
author = {Novikov, Andrey},
title = {Optimal sequential procedures with {Bayes} decision rules},
journal = {Kybernetika},
pages = {754--770},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722099},
zbl = {1201.62095},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/}
}
Novikov, Andrey. Optimal sequential procedures with Bayes decision rules. Kybernetika, Tome 46 (2010) no. 4, pp. 754-770. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/
[1] Berger, J. O.: Statistical Decision Theory and Sequential Analysis. Second edition. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1985. | MR
[2] Berk, R. H.: Locally most powerful sequential tests. Ann. Statist. 3 (1975), 373–381. | DOI | MR | Zbl
[3] Castillo, E., García, J.: Necessary conditions for optimal truncated sequential tests. Simple hypotheses (in Spanish). Stochastica 7 (1983), 1, 63–81. | MR
[4] Chow, Y. S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston 1971. | MR | Zbl
[5] Cochlar, J.: The optimum sequential test of a finite number of hypotheses for statistically dependent observations. Kybernetika 16 (1980), 36–47. | MR | Zbl
[6] Cochlar, J., Vrana, I.: On the optimum sequential test of two hypotheses for statistically dependent observations. Kybernetika 14 (1978), 57–69. | MR | Zbl
[7] DeGroot, M. H.: Optimal Statistical Decisions. McGraw-Hill Book Co., New York, London, Sydney 1970. | MR | Zbl
[8] Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. Academic Press, New York, London 1967. | MR | Zbl
[9] Ghosh, M., Mukhopadhyay, N., Sen, P. K.: Sequential Estimation. John Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1997. | MR | Zbl
[10] Kiefer, J., Weiss, L.: Some properties of generalized sequential probability ratio tests. Ann. Math. Statist. 28 (1957), 57–75. | DOI | MR | Zbl
[11] Lehmann, E. L.: Testing Statistical Hypotheses. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1959. | MR | Zbl
[12] Lorden, G.: Structure of sequential tests minimizing an expected sample size. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 51 (1980), 291–302. | MR | Zbl
[13] Müller-Funk, U., Pukelsheim, F., Witting, H.: Locally most powerful tests for two-sided hypotheses. Probability and statistical decision theory, Vol. A (Bad Tatzmannsdorf 1983), pp. 31–56, Reidel, Dordrecht 1985. | MR
[14] Novikov, A.: Optimal sequential multiple hypothesis testing in presence of control variables. Kybernetika 45 (2009), 3, 507–528. | MR | Zbl
[15] Novikov, A.: Optimal sequential multiple hypothesis tests. Kybernetika 45 (2009), 2, 309–330. | MR | Zbl
[16] Novikov, A.: Optimal sequential procedures with Bayes decision rules. Internat. Math. Forum 5 (2010), 43, 2137–2147. | MR | Zbl
[17] Novikov, A.: Optimal sequential tests for two simple hypotheses. Sequential Analysis 28 (2009), 2, 188–217. | DOI | MR | Zbl
[18] Novikov, A., Novikov, P.: Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives. Journal of Statistical Planning and Inference 140 (2010), 3, 750-765. | DOI | MR | Zbl
[19] Schmitz, N.: Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statistics 79 (1993), New York: Springer-Verlag. | DOI | MR | Zbl
[20] Shiryayev, A. N.: Optimal Stopping Rules. Springer-Verlag, Berlin, Heidelberg, New York 1978. | MR | Zbl
[21] Wald, A.: Statistical Decision Functions. John Wiley & Sons, Inc., New York, London, Sydney 1971. | MR | Zbl
[22] Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. | DOI | MR | Zbl
[23] Weiss, L.: On sequential tests which minimize the maximum expected sample size. J. Amer. Statist. Assoc. 57 (1962), 551–566. | DOI | MR | Zbl
[24] Zacks, S.: The Theory of Statistical Inference. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, London, Sydney 1971. | MR