Optimal sequential procedures with Bayes decision rules
Kybernetika, Tome 46 (2010) no. 4, pp. 754-770 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect decision and the cost of observations.
In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect decision and the cost of observations.
Classification : 60G40, 62C10, 62L10, 62L15
Keywords: sequential analysis; discrete-time stochastic process; dependent observations; statistical decision problem; Bayes decision; randomized stopping time; optimal stopping rule; existence and uniqueness of optimal sequential decision procedure
@article{KYB_2010_46_4_a10,
     author = {Novikov, Andrey},
     title = {Optimal sequential procedures with {Bayes} decision rules},
     journal = {Kybernetika},
     pages = {754--770},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2722099},
     zbl = {1201.62095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/}
}
TY  - JOUR
AU  - Novikov, Andrey
TI  - Optimal sequential procedures with Bayes decision rules
JO  - Kybernetika
PY  - 2010
SP  - 754
EP  - 770
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/
LA  - en
ID  - KYB_2010_46_4_a10
ER  - 
%0 Journal Article
%A Novikov, Andrey
%T Optimal sequential procedures with Bayes decision rules
%J Kybernetika
%D 2010
%P 754-770
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/
%G en
%F KYB_2010_46_4_a10
Novikov, Andrey. Optimal sequential procedures with Bayes decision rules. Kybernetika, Tome 46 (2010) no. 4, pp. 754-770. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a10/

[1] Berger, J. O.: Statistical Decision Theory and Sequential Analysis. Second edition. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1985. | MR

[2] Berk, R. H.: Locally most powerful sequential tests. Ann. Statist. 3 (1975), 373–381. | DOI | MR | Zbl

[3] Castillo, E., García, J.: Necessary conditions for optimal truncated sequential tests. Simple hypotheses (in Spanish). Stochastica 7 (1983), 1, 63–81. | MR

[4] Chow, Y. S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston 1971. | MR | Zbl

[5] Cochlar, J.: The optimum sequential test of a finite number of hypotheses for statistically dependent observations. Kybernetika 16 (1980), 36–47. | MR | Zbl

[6] Cochlar, J., Vrana, I.: On the optimum sequential test of two hypotheses for statistically dependent observations. Kybernetika 14 (1978), 57–69. | MR | Zbl

[7] DeGroot, M. H.: Optimal Statistical Decisions. McGraw-Hill Book Co., New York, London, Sydney 1970. | MR | Zbl

[8] Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. Academic Press, New York, London 1967. | MR | Zbl

[9] Ghosh, M., Mukhopadhyay, N., Sen, P. K.: Sequential Estimation. John Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1997. | MR | Zbl

[10] Kiefer, J., Weiss, L.: Some properties of generalized sequential probability ratio tests. Ann. Math. Statist. 28 (1957), 57–75. | DOI | MR | Zbl

[11] Lehmann, E. L.: Testing Statistical Hypotheses. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1959. | MR | Zbl

[12] Lorden, G.: Structure of sequential tests minimizing an expected sample size. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 51 (1980), 291–302. | MR | Zbl

[13] Müller-Funk, U., Pukelsheim, F., Witting, H.: Locally most powerful tests for two-sided hypotheses. Probability and statistical decision theory, Vol. A (Bad Tatzmannsdorf 1983), pp. 31–56, Reidel, Dordrecht 1985. | MR

[14] Novikov, A.: Optimal sequential multiple hypothesis testing in presence of control variables. Kybernetika 45 (2009), 3, 507–528. | MR | Zbl

[15] Novikov, A.: Optimal sequential multiple hypothesis tests. Kybernetika 45 (2009), 2, 309–330. | MR | Zbl

[16] Novikov, A.: Optimal sequential procedures with Bayes decision rules. Internat. Math. Forum 5 (2010), 43, 2137–2147. | MR | Zbl

[17] Novikov, A.: Optimal sequential tests for two simple hypotheses. Sequential Analysis 28 (2009), 2, 188–217. | DOI | MR | Zbl

[18] Novikov, A., Novikov, P.: Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives. Journal of Statistical Planning and Inference 140 (2010), 3, 750-765. | DOI | MR | Zbl

[19] Schmitz, N.: Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statistics 79 (1993), New York: Springer-Verlag. | DOI | MR | Zbl

[20] Shiryayev, A. N.: Optimal Stopping Rules. Springer-Verlag, Berlin, Heidelberg, New York 1978. | MR | Zbl

[21] Wald, A.: Statistical Decision Functions. John Wiley & Sons, Inc., New York, London, Sydney 1971. | MR | Zbl

[22] Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. | DOI | MR | Zbl

[23] Weiss, L.: On sequential tests which minimize the maximum expected sample size. J. Amer. Statist. Assoc. 57 (1962), 551–566. | DOI | MR | Zbl

[24] Zacks, S.: The Theory of Statistical Inference. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, London, Sydney 1971. | MR