@article{KYB_2010_46_4_a0,
author = {Mesiar, Radko and Sarkoci, Peter},
title = {Open problems posed at the tenth {International} conference on fuzzy set theory and applications {(FSTA} 2010, {Liptovsk\'y} {J\'an,} {Slovakia)}},
journal = {Kybernetika},
pages = {585--599},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2722089},
zbl = {1211.03077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a0/}
}
TY - JOUR AU - Mesiar, Radko AU - Sarkoci, Peter TI - Open problems posed at the tenth International conference on fuzzy set theory and applications (FSTA 2010, Liptovský Ján, Slovakia) JO - Kybernetika PY - 2010 SP - 585 EP - 599 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a0/ LA - en ID - KYB_2010_46_4_a0 ER -
%0 Journal Article %A Mesiar, Radko %A Sarkoci, Peter %T Open problems posed at the tenth International conference on fuzzy set theory and applications (FSTA 2010, Liptovský Ján, Slovakia) %J Kybernetika %D 2010 %P 585-599 %V 46 %N 4 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a0/ %G en %F KYB_2010_46_4_a0
Mesiar, Radko; Sarkoci, Peter. Open problems posed at the tenth International conference on fuzzy set theory and applications (FSTA 2010, Liptovský Ján, Slovakia). Kybernetika, Tome 46 (2010) no. 4, pp. 585-599. http://geodesic.mathdoc.fr/item/KYB_2010_46_4_a0/
[1] Ahmad, N., Kim, H. K., McCann, R. J.: Extremal doubly stochastic measures and optimal transportation. Working paper, 2009.
[2] Alsina, C.: On Schur-concave $t$-norms and triangle functions. In: General inequalities, 4 (Oberwolfach, 1983), volume 71 of Internat. Schriftenreihe Numer. Math., pp. 241–248. Birkhäuser, Basel 1984. | MR
[3] Alsina, C., Frank, M. J., Schweizer, B.: Problems on associative functions. Aequationes Math. 66 (2003), 128–140. | DOI | MR | Zbl
[4] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89. | DOI | MR | Zbl
[5] Alsina, C., Schweizer, B., Frank, M. J.: Associative Functions. World Scientific Publishing Company, Singapore 2006. | MR | Zbl
[6] Alvoni, E., Papini, P. L., Spizzichino, F.: On a class of transformations of copulas and quasi-copulas. Fuzzy Sets and Systems 160 (2009), 334–343. | MR | Zbl
[7] Atanassov, K.: Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, Heidelberg 1999. | MR | Zbl
[8] Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313–339. | DOI | MR | Zbl
[9] Butnariu, D., Klement, E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993. | Zbl
[10] Couceiro, M.: On two generalizations of associativity. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 47, Liptovský Ján 2010.
[11] Cuculescu, I., Theodorescu, R.: Extreme value attractors for star unimodal copulas. CR Math. Acad. Sci. Paris 334 (2002) 689–692. | DOI | MR | Zbl
[12] Durante, F., Foschi, R., Sarkoci, P.: Distorted copulas: constructions and tail dependence. Comm. Statist. Theory Methods 2010. In press. | MR | Zbl
[13] Durante, F., Kolesárová, A., Mesiar, R., Sempi, C.: Copulas with given diagonal sections: Novel constructions and applications. Internat. J. Uncertain. Fuzziness and Knowledge-Based Systems 18 (2007), 397–410. | DOI | MR | Zbl
[14] Durante, F., Mesiar, R., Papini, P. L.: The lattice-theoretic structure of the sets of triangular norms and semi-copulas. Nonlinear Analysis, Theory, Methods and Applications 69 (2008), 46–52. | MR | Zbl
[15] Durante, F., Mesiar, R., Sempi, C.: Copulas with given diagonal section: some new results. In: Proc. EUSFLAT-LFA Conference (E. Montseny and P. Sobrevilla, eds.), pp. 932–936, Barcelona 2005.
[16] Durante, F., Rodríguez-Lallena, J. A., Úbeda-Flores, M.: New constructions of diagonal patchwork copulas. Inform. Sci. 179 (2009), 3383–3391. | DOI | MR | Zbl
[17] Durante, F., Sempi, C.: Copulæ, and Schur-concavity. Internat. Math. J. 3 (2003), 893–905. | MR | Zbl
[18] Durante, F., Sempi, C.: Copula and semicopula transforms. Internat. J. Math. Math. Sci. (2005), 645–655. | DOI | MR | Zbl
[19] Durante, F., Sempi, C.: Semicopulæ. Kybernetika 41 (2005), 315–328. | MR | Zbl
[20] Durante, F., Spizzichino, F.: Semi-copulas, capacities and families of level curves. Fuzzy Sets and Systems 161 (2009), 2009.
[21] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352. | DOI | MR
[22] Frank, M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aeqationes Math. 19 (1979), 194–226. | DOI | MR | Zbl
[23] Genest, C., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205. | DOI | MR
[24] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | MR | Zbl
[25] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl
[26] Gudder, S. P.: S-dominating effect algebras. Inter. J. Theor. Phys. 37 (1998), 915–923. | DOI | MR | Zbl
[27] Hestir, K., Williams, S. C.: Supports of doubly stochastic measures. Bernoulli 1 (1995), 217–243. | DOI | MR | Zbl
[28] Hilbert, D.: Mathematical problems. Bull. Amer. Math. Soc. 8 (1901/02), 437–479. | DOI | MR
[29] Janiš, V.: T-Norm based cuts of intuitionistic fuzzy sets. Inform. Sci. 180 (2010), 1134–1137. | DOI | MR | Zbl
[30] Jaworski, P.: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863–2871. | DOI | MR | Zbl
[31] Jenča, G.: Blocks of homogeneous effect algebras. Bull. Austr. Math. Soc. 64 (2001), 81–98. | DOI | MR | Zbl
[32] Jenča, G.: Finite homogeneous and lattice ordered effect algebras. Discrete Mathematics 272 (2003), 197–214. | DOI | MR | Zbl
[33] Jenča, G.: Sharp and meager elements in orthocomplete homogeneous effect algebras. Order 27 (2010), 41–61. | DOI | MR | Zbl
[34] Jenča, G.: Coexistence in interval effect algebras. Proc. Amer. Math. Soc. To appear.
[35] Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Amer. Math. Soc. 131 (2003), 2663–2671. | DOI | MR | Zbl
[36] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[37] Jwaid, T., Baets, B. De: Double conic copulas. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 73, Liptovský Ján 2010.
[38] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620. | MR | Zbl
[39] Klement, E. P., Mesiar, R.: Open problems posed at the Eight International Conference on Fuzzy Set Theory and Applications (FSTA 2006, Liptovský Ján, Slovakia). Kybernetika 42 (2006), 225–235. | MR
[40] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[41] Klement, E. P., Mesiar, R., Pap, E.: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. 45 (2001), 1393–1400. | MR | Zbl
[42] Klement, E. P., Mesiar, R., Pap, E.: Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479. | MR | Zbl
[43] Klement, E. P., Mesiar, R., Pap, E.: Archimax copulas and invariance under transformations. C R Math. Acad. Sci. Paris 340 (2005), 755–758. | DOI | MR | Zbl
[44] Kolesárová, A., Mordelová, J., Stupňanová, A.: Aggregation functions as extensions of fuzzy measures. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 80, Liptovský Ján 2010.
[45] Marinacci, M., Montrucchio, L.: Ultramodular functions. Math. Oper. Res. 30 (2005), 311–332. | DOI | MR | Zbl
[46] Mesiar, R., Novák, V.: Open problems from the 2nd International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets and Systems 81 (1996), 185–190. | MR
[47] Mesiarová, A.: Triangular Norms and their Diagonal Functions. Master Thesis, Comenius University, Bratislava 2002.
[48] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $L_{1}$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059–3097. | DOI | MR
[49] Moynihan, R.: Infinite $\tau _{T}$ products of distribution functions. J. Austral. Math. Soc. Ser. A 26 (1978), 227–240. | DOI | MR
[50] Nelsen, R. B.: An Introduction to Copulas. Second edition. Springer Science+Business Media, New York 2006. | MR | Zbl
[51] Nelsen, R. B., Úbeda-Flores, M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. CR Math. Acad. Sci. Paris 341 (2005), 583–586. | DOI | MR | Zbl
[52] Post, E. L.: Polyadic groups. Trans. Amer. Math. Soc. 48 (1940), 208–350. | DOI | MR | Zbl
[53] Quesada-Molina, J. J., Rodríguez-Lallena, J.-A.: Some remarks on the existence of doubly stochastic measures with latticework hairpin support. Aequationes Math. 47 (1994), 164–174. | DOI | MR
[54] Riečanová, Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525–532. | MR | Zbl
[55] Riečanová, Z.: MacNeille completion of Archimedean lattice effect algebras and their sublattice effect algebras. Preprint.
[56] Riečanová, Z., Junde, Wu: States on sharply dominating effect algebras. Science in China Series A: Mathematics 51 (2008), 907–914. | DOI | MR | Zbl
[57] Royden, H. L.: Real Analysis. Third edition. Macmillan Publishing Company, New York 1988. | MR | Zbl
[58] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR | Zbl
[59] Tawn, J.: Bivariate extreme value theory: Models and estimation. Biometrika 75 (1988), 397–415. | DOI | MR | Zbl
[60] Vasiliev, T.: Four extended level operators of membership/non-membership over intuitionistic fuzzy sets. In: Proc. Twelfth International Conference on Intuitionistic Fuzzy Sets, Vol. 2 (J. Kacprzyk and K. Atanassov, eds.), Sofia 2008. Notes on Intuitionistic Fuzzy Sets 14 (2008), 100–107.