A probability density function estimation using F-transform
Kybernetika, Tome 46 (2010) no. 3, pp. 447-458 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to propose a new approach to probability density function (PDF) estimation which is based on the fuzzy transform (F-transform) introduced by Perfilieva in [10]. Firstly, a smoothing filter based on the combination of the discrete direct and continuous inverse F-transform is introduced and some of the basic properties are investigated. Next, an alternative approach to PDF estimation based on the proposed smoothing filter is established and compared with the most used method of Parzen windows. Such an approach can be of a great value mainly when dealing with financial data, i. e. large samples of observations.
The aim of this paper is to propose a new approach to probability density function (PDF) estimation which is based on the fuzzy transform (F-transform) introduced by Perfilieva in [10]. Firstly, a smoothing filter based on the combination of the discrete direct and continuous inverse F-transform is introduced and some of the basic properties are investigated. Next, an alternative approach to PDF estimation based on the proposed smoothing filter is established and compared with the most used method of Parzen windows. Such an approach can be of a great value mainly when dealing with financial data, i. e. large samples of observations.
Classification : 60E99, 62G07, 62G86, 91G80
Keywords: fuzzy transform; probability density function estimation; smoothing filter; financial returns
@article{KYB_2010_46_3_a9,
     author = {Hol\v{c}apek, Michal and Tich\'y, Toma\v{s}},
     title = {A probability density function estimation using {F-transform}},
     journal = {Kybernetika},
     pages = {447--458},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2676082},
     zbl = {1194.62030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a9/}
}
TY  - JOUR
AU  - Holčapek, Michal
AU  - Tichý, Tomaš
TI  - A probability density function estimation using F-transform
JO  - Kybernetika
PY  - 2010
SP  - 447
EP  - 458
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a9/
LA  - en
ID  - KYB_2010_46_3_a9
ER  - 
%0 Journal Article
%A Holčapek, Michal
%A Tichý, Tomaš
%T A probability density function estimation using F-transform
%J Kybernetika
%D 2010
%P 447-458
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a9/
%G en
%F KYB_2010_46_3_a9
Holčapek, Michal; Tichý, Tomaš. A probability density function estimation using F-transform. Kybernetika, Tome 46 (2010) no. 3, pp. 447-458. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a9/

[1] Ahalt, S. C., Krishnamurthy, A. K., Chen, P. K., Melton, D. E.: Competative learning algorithms for vector quantization. Neural Networks 4 (1993), 3, 277 – 290.

[2] Assenza, A., Valle, M., Verleysen, M.: A comparative study of various probabilty density estimation methods for data analysis. Internat. J. Comput. Intell. Systems 1 (2009), 2, 188–201.

[3] Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. (Springer Series in Statistics.) Springer-Verlag, Berlin 2005. | MR | Zbl

[4] Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer-Verlag, New York 2004. | MR

[5] Kostelich, E. J., Yorke, J. A.: Noise reduction: Finding the simplest dynamical system consistent with the data. Physica D 41 (1990), 183–196. | MR | Zbl

[6] Kuo, Hui-Hsiung: White Noise Distribution Theory. CRC Press, 1996. | MR | Zbl

[7] McLachlan, G. J., Peel, D.: Finite Mixture Models. Wiley, New York 2000. | MR | Zbl

[8] Nachtegael, M., Weken, D. Van der, Ville, D. Van De, Kerre, E. E., eds.: Fuzzy Filters for Image Processing. (Studies in Fuzziness and Soft Computing.) Springer-Verlag, 2003.

[9] Parzen, E.: On estimation of a probabilty density function and mode. Ann. Math. Statist. 33 (1962), 1065–1076. | DOI | MR

[10] Perfilieva, I.: Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems 157 (2006), 8, 993–1023. | MR | Zbl

[11] Perfilieva, I., Valášek, R.: Fuzzy transforms in removing noise. In: Innovation in Hybrid Intelligent Systems. Springer-Verlag, Berlin – Heidelberg 2005.

[12] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London 1986. | MR | Zbl

[13] Simonoff, J. S.: Smoothing Methods in Statistics. Springer-Verlag, New York 1996. | MR | Zbl

[14] Stefanini, L.: Fuzzy transforms and smooth function. In: Proc. IFSA/EUSFLAT 2009, Lisabon 2009.