Keywords: mathematical programs with equilibrium constraints; S-stationary points; M-stationary points; Fréchet normal cone; limiting normal cone
@article{KYB_2010_46_3_a7,
author = {Henrion, Ren\'e and Outrata, Ji\v{r}{\'\i} and Surowiec, Thomas},
title = {A note on the relation between strong and {M-stationarity} for a class of mathematical programs with equilibrium constraints},
journal = {Kybernetika},
pages = {423--434},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676080},
zbl = {1225.90125},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a7/}
}
TY - JOUR AU - Henrion, René AU - Outrata, Jiří AU - Surowiec, Thomas TI - A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints JO - Kybernetika PY - 2010 SP - 423 EP - 434 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a7/ LA - en ID - KYB_2010_46_3_a7 ER -
%0 Journal Article %A Henrion, René %A Outrata, Jiří %A Surowiec, Thomas %T A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints %J Kybernetika %D 2010 %P 423-434 %V 46 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a7/ %G en %F KYB_2010_46_3_a7
Henrion, René; Outrata, Jiří; Surowiec, Thomas. A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints. Kybernetika, Tome 46 (2010) no. 3, pp. 423-434. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a7/
[1] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6 (1996), 1087–1105. | DOI | MR | Zbl
[2] Dontchev, A. L., Rockafellar, R. T.: Ample parameterization of variational inclusions. SIAM J. Optim. 12 (2001), 170–187. | DOI | MR | Zbl
[3] Henrion, R., Jourani, A., Outrata, J. V.: On the calmness of a class of multifunctions. SIAM J. Optim. 13 (2002), 603–618. | DOI | MR | Zbl
[4] Henrion, R., Römisch, W.: On M-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling. Appl. Math. 52 (2007), 473–494. | DOI | MR
[5] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems. Nonlinear Anal. 71 (2009), 1213–1226. | DOI | MR
[6] Henrion, R., Outrata, J. V., Surowiec, T.: Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market. Weierstraß-Institute of Applied Analysis and Stochastics, Preprint No. 1433 (2009) and submitted. | MR
[7] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim., to appear. | MR
[8] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996. | MR | Zbl
[9] Mordukhovich, B. S.: Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow 1988. | MR
[10] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. Vol. 1: Basic Theory. Springer, Berlin 2006.
[11] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. Vol. 2: Applications. Springer, Berlin 2006. | MR
[12] Flegel, M. L., Kanzow, C., Outrata, J. V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15 (2007), 139–162. | DOI | MR | Zbl
[13] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht 1998. | MR
[14] Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13 (1999), 111–136. | DOI | MR
[15] Robinson, S. M.: Some continuity properties of polyhedral multifunctions. Math. Program. Studies 14 (1976), 206–214. | DOI | MR | Zbl
[16] Robinson, S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–62. | DOI | MR | Zbl
[17] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer, Berlin 1998. | MR | Zbl
[18] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22. | DOI | MR
[19] Surowiec, T.: Explicit Stationarity Conditions and Solution Characterization for Equilibrium Problems with Equilibrium Constraints. Doctoral Thesis, Humboldt University, Berlin 2009.