Keywords: (max, min) algebra; eigenvector; circulant matrix
@article{KYB_2010_46_3_a4,
author = {Gavalec, Martin and Tom\'a\v{s}kov\'a, Hana},
title = {Eigenspace of a circulant max{\textendash}min matrix},
journal = {Kybernetika},
pages = {397--404},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676077},
zbl = {1206.15008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a4/}
}
Gavalec, Martin; Tomášková, Hana. Eigenspace of a circulant max–min matrix. Kybernetika, Tome 46 (2010) no. 3, pp. 397-404. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a4/
[1] Cechlárová, K.: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63–73. | DOI | MR
[2] Cuninghame-Green, R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer–Verlag, Berlin, 1979. | MR | Zbl
[3] Cuninghame-Green, R. A.: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90 (P. W. Hawkes, ed.), Academic Press, New York 1995.
[4] Gavalec, M.: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149–167. | DOI | MR | Zbl
[5] Gavalec, M., Plavka, J.: Eigenproblem in extremal algebras. In: Proc. 9th Internat. Symposium Operations Research ’07, Nova Gorica, Slovenia 2007. | Zbl
[6] Gray, R. M.: Toeplitz and Circulant Matrices. Now Publishers, Delft 2006. | Zbl
[7] Plavka, J.: Eigenproblem for circulant matrices in max-algebra. Optimization 50 (2001), 477–483. | DOI | MR | Zbl
[8] Plavka, J.: l-parametric eigenproblem in max algebra. Discrete Applied Mathematics 150 (2005), 16–28. | DOI | MR
[9] Zimmermann, K.: Extremal Algebra (in Czech). Ekon. ústav ČSAV, Praha 1976.
[10] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structure. (Ann. Discrete Math. 10.) North Holland, Amsterdam 1981. | MR