Keywords: (max, min) eigenvector; interval coefficients
@article{KYB_2010_46_3_a3,
author = {Gavalec, Martin and Plavka, J\'an},
title = {Monotone interval eigenproblem in max{\textendash}min algebra},
journal = {Kybernetika},
pages = {387--396},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676076},
zbl = {1202.15013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/}
}
Gavalec, Martin; Plavka, Ján. Monotone interval eigenproblem in max–min algebra. Kybernetika, Tome 46 (2010) no. 3, pp. 387-396. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/
[1] Cechlárová, K.: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63–73. | DOI | MR
[2] Cechlárová, K.: Solutions of interval linear systems in $(\operatorname{max},+)$-algebra. In: Proc. 6th Internat. Symposium on Operational Research, Preddvor, Slovenia 2001, pp. 321–326.
[3] Cechlárová, K., Cuninghame-Green, R. A.: Interval systems of max-separable linear equations. Lin. Algebra Appl. 340 (2002), 215–224. | DOI | MR
[4] Cuninghame-Green, R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer–Verlag, Berlin 1979. | MR | Zbl
[5] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer–Verlag, Berlin 2006. | MR
[6] Gavalec, M.: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149–167. | DOI | MR | Zbl
[7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Internat. J. Pure Applied Math. 45 (2008), 533–542. | MR | Zbl
[8] Rohn, J.: Systems of linear interval equations. Lin. Algebra Appl. 126 (1989), 39–78. | DOI | MR | Zbl