Monotone interval eigenproblem in max–min algebra
Kybernetika, Tome 46 (2010) no. 3, pp. 387-396 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The interval eigenproblem in max-min algebra is studied. A classification of interval eigenvectors is introduced and six types of interval eigenvectors are described. Characterization of all six types is given for the case of strictly increasing eigenvectors and Hasse diagram of relations between the types is presented.
The interval eigenproblem in max-min algebra is studied. A classification of interval eigenvectors is introduced and six types of interval eigenvectors are described. Characterization of all six types is given for the case of strictly increasing eigenvectors and Hasse diagram of relations between the types is presented.
Classification : 08A72, 15A18, 15A80, 65G30, 90B35, 90C47
Keywords: (max, min) eigenvector; interval coefficients
@article{KYB_2010_46_3_a3,
     author = {Gavalec, Martin and Plavka, J\'an},
     title = {Monotone interval eigenproblem in max{\textendash}min algebra},
     journal = {Kybernetika},
     pages = {387--396},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2676076},
     zbl = {1202.15013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/}
}
TY  - JOUR
AU  - Gavalec, Martin
AU  - Plavka, Ján
TI  - Monotone interval eigenproblem in max–min algebra
JO  - Kybernetika
PY  - 2010
SP  - 387
EP  - 396
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/
LA  - en
ID  - KYB_2010_46_3_a3
ER  - 
%0 Journal Article
%A Gavalec, Martin
%A Plavka, Ján
%T Monotone interval eigenproblem in max–min algebra
%J Kybernetika
%D 2010
%P 387-396
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/
%G en
%F KYB_2010_46_3_a3
Gavalec, Martin; Plavka, Ján. Monotone interval eigenproblem in max–min algebra. Kybernetika, Tome 46 (2010) no. 3, pp. 387-396. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a3/

[1] Cechlárová, K.: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63–73. | DOI | MR

[2] Cechlárová, K.: Solutions of interval linear systems in $(\operatorname{max},+)$-algebra. In: Proc. 6th Internat. Symposium on Operational Research, Preddvor, Slovenia 2001, pp. 321–326.

[3] Cechlárová, K., Cuninghame-Green, R. A.: Interval systems of max-separable linear equations. Lin. Algebra Appl. 340 (2002), 215–224. | DOI | MR

[4] Cuninghame-Green, R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer–Verlag, Berlin 1979. | MR | Zbl

[5] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer–Verlag, Berlin 2006. | MR

[6] Gavalec, M.: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149–167. | DOI | MR | Zbl

[7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Internat. J. Pure Applied Math. 45 (2008), 533–542. | MR | Zbl

[8] Rohn, J.: Systems of linear interval equations. Lin. Algebra Appl. 126 (1989), 39–78. | DOI | MR | Zbl