Stochastic geometric programming with an application
Kybernetika, Tome 46 (2010) no. 3, pp. 374-386 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In applications of geometric programming, some coefficients and/or exponents may not be precisely known. Stochastic geometric programming can be used to deal with such situations. In this paper, we shall indicate which stochastic programming approaches and which structural and distributional assumptions do not destroy the favorable structure of geometric programs. The already recognized possibilities are extended for a tracking model and stochastic sensitivity analysis is presented in the context of metal cutting optimization. Illustrative numerical results are reported.
In applications of geometric programming, some coefficients and/or exponents may not be precisely known. Stochastic geometric programming can be used to deal with such situations. In this paper, we shall indicate which stochastic programming approaches and which structural and distributional assumptions do not destroy the favorable structure of geometric programs. The already recognized possibilities are extended for a tracking model and stochastic sensitivity analysis is presented in the context of metal cutting optimization. Illustrative numerical results are reported.
Classification : 90C15, 90C31, 90C90
Keywords: stochastic geometric programming; statistical sensitivity analysis; tracking model; metal cutting optimization
@article{KYB_2010_46_3_a2,
     author = {Dupa\v{c}ov\'a, Jitka},
     title = {Stochastic geometric programming with an application},
     journal = {Kybernetika},
     pages = {374--386},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2676074},
     zbl = {1201.90141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a2/}
}
TY  - JOUR
AU  - Dupačová, Jitka
TI  - Stochastic geometric programming with an application
JO  - Kybernetika
PY  - 2010
SP  - 374
EP  - 386
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a2/
LA  - en
ID  - KYB_2010_46_3_a2
ER  - 
%0 Journal Article
%A Dupačová, Jitka
%T Stochastic geometric programming with an application
%J Kybernetika
%D 2010
%P 374-386
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a2/
%G en
%F KYB_2010_46_3_a2
Dupačová, Jitka. Stochastic geometric programming with an application. Kybernetika, Tome 46 (2010) no. 3, pp. 374-386. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a2/

[1] Akturk, M. S., Gurel, S.: Machining conditions-based preventive maintenance. Intl. J. Production Research 45 (2007), 1725–1743. | DOI | Zbl

[2] Avriel, M., Wilde, D. J.: Stochastic geometric programming. In: Proc. Princeton Sympium of Mathematical Programming (H. W. Kuhn, ed.) Princeton Univ. Press 1970. | MR | Zbl

[3] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming (Theory and Algorithms). Second edition. Wiley, New York 1993. | MR | Zbl

[4] al., S. Boyd et: A tutorial on geometric programming. Optimization and Engineering 8 (2007), 67–127. | DOI | MR | Zbl

[5] Chakrabarti, K. K.: Cost of surface finish – A general optimisation approach. In: Proc. 12th AIMTDR Conference, Delhi, Tata Mc Graw-Hill Publ., New Delhi 1986, pp. 504–507.

[6] Dupačová, J.: Stability in stochastic programming with recourse – Estimated parameters. Math. Progr. 28 (1984), 72–83. | DOI | MR

[7] Dupačová, J., Charamza, P., Mádl, J.: On stochastic aspects of a metal cutting problem. In: Stochastic Programming: Numerical Methods and Engineering Applications (P. Kall and K. Marti, eds.), LNEMS 423, Springer, Berlin 1995, pp. 196–209.

[8] Dupačová, J., Charamza, P., Mádl, J.: On stochastic aspects of a metal cutting problem. In: Operations Research Proceedings 1994 (U. Derigs, A. Bachem, and A. Drexl, eds.), Springer, Berlin 1995, pp. 28–32.

[9] Ellner, P. M., Stark, R. M.: On the distribution of the optimal value for a class of stochastic geometric programs. Naval Res. Log. Quart. 27 (1980), 549–571. | DOI | MR | Zbl

[10] Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York 1983. | MR | Zbl

[11] Hsiung, K-L., Kim, S-J., Boyd, S.: Power Allocation with Outage Probability Specifications in Wireless Shadowed Fading Channels via Geometric Programming. Research Report, Information Systems Laboratory, Stanford University 2008.

[12] al., K. Iwata et: A probabilistic approach to the determination of the optimal cutting conditions. J. Engrg. Industry Trans. ASME 94 (1972), 1099–1107. | DOI

[13] Jagannathan, R.: A stochastic geometric programming problem with multiplicative recourse. Oper. Res. Lett. 9 (1990), 99–104. | DOI | MR | Zbl

[14] Jefferson, T. R., Scott, C. H.: Quadratic geometric programming with application to machining economics. Math. Progr. 31 (1985), 137–152. | DOI | MR | Zbl

[15] Jha, N. K.: Probabilistic cost estimation in advance of production in a computerized manufacturing system through stochastic geometric programming. Computers Ind. Engrg. 30 (1996), 809–821. | DOI

[16] Kavan, J.: Optimisation of Cutting Conditions on Automatic Production Lines (in Czech). PhD Dissertation, Czech Technical University, Prague 2003.

[17] Kyparisis, J.: Sensitivity analysis in geometric programming: Theory and computations. Ann. Oper. Res. 27 (1990), 39–64. | DOI | MR | Zbl

[18] Mukherjee, S. K., Pal, M. N.: Application of complimentary geometric programming technique in optimisation of a multipass turning operation. In: Proc. 12th AIMTDR Conference, Delhi, Tata Mc Graw-Hill Publ., New Delhi 1986, pp. 487–489.

[19] Rao, S.: Engineering Optimization: Theory and Practice. Third edition. Wiley-Interscience, New York 1996.

[20] Scott, C. H., Jefferson, T. R., Lee, A.: Stochastic management via composite geometric programming. Optimization 36 (1996), 59–74. | DOI | MR

[21] Stark, R. M.: On zero-degree stochastic geometric programs. J. Optim. Theory Appl. 23 (1977), 167–187. | DOI | MR | Zbl

[22] Taylor, F. W.: On the art of cutting metals. Trans. ASME 28 (1907), 31–35.

[23] Wiebking, R. D.: Optimal engineering design under uncertainty by geometric programming. Management Sci. 6 (1977), 644–651. | DOI | Zbl