Keywords: optimum engineering design; stochastic programming; multi-objective programming; Monte Carlo methods; progressive hedging algorithm
@article{KYB_2010_46_3_a19,
author = {\v{Z}ampachov\'a, Eva and Popela, Pavel and Mr\'azek, Michal},
title = {Optimum beam design via stochastic programming},
journal = {Kybernetika},
pages = {571--582},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676092},
zbl = {1201.90145},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a19/}
}
Žampachová, Eva; Popela, Pavel; Mrázek, Michal. Optimum beam design via stochastic programming. Kybernetika, Tome 46 (2010) no. 3, pp. 571-582. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a19/
[1] Betts, J. T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, London 2001. | MR | Zbl
[2] Branda, M., Dupačová, J.: Approximations and contamination bounds for probabilistic programs. SPEPS 13 (2008), 1–25.
[3] Conti, S., Held, H., Pach, M., Rumpf, M., Schultz, R.: Shape optimization under uncertainty – a stochastic programming perspective. SIAM J. Optim. 19 (2009), 1610–1632. | DOI | MR | Zbl
[4] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation, and Computation (Advances in Design and Control). SIAM, 2003. | MR
[5] Helgason, T., Wallace, S. W.: Approximate scenario solutions in the progressive hedging algorithm. Ann. Oper. Res. 31 (1991), 425–444. | DOI | MR | Zbl
[6] Hořejší, J., Novák, O.: Statics of Structures (in Czech). SNTL, Praha 1972.
[7] Mathews, J. H., Fink, K. D.: Numerical Methods Using Matlab. Prentice Hall, New Jersey 2004.
[8] Mauder, T., Kavička, F., Štětina, J., Franěk, Z., Masarik, M.: A mathematical & stochastic modelling of the concasting of steel slabs. In: Proc. METAL Conference, Tanger 2009, pp. 41–48.
[9] Mak, W.-K., Morton, D. P., Wood, R. K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24 (1999), 47–56. | DOI | MR
[10] Plšek, J., Štěpánek, P.: Optimisation of reinforced concrete cross-section. Engenharia Estudo e Pesquisa 1 (2007), 24–36.
[11] Plšek, J., Štěpánek, P., Popela, P.: Deterministic and reliability based structural optimization of concrete cross-section. J. Advanced Concrete Technology 1 (2007), 63–74. | DOI
[12] Rockafellar, R. T., Wets, R. J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16 (1991), 1–29. | MR | Zbl
[13] Ruszczynski, A., Shapiro, A.: Handbooks in Operations Research and Management Science, Vol. 10: Stochastic Programming. Elsevier, Amsterdam 2003.
[14] Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, New York 1986. | MR | Zbl
[15] Šarlej, M., Petr, P., Hájek, J., Stehlík, P.: Computational support in experimental burner design optimisation. Appl. Thermal Engrg. 16 (2007), 2727–2732. | DOI
[16] Wets, R. J.-B.: The aggregation principle in scenario analysis and stochastic optimization. In: Algorithms and Model Formulations in Mathematical Programming (S. Wallace, ed.), Springer–Verlag, Berlin 1989, pp. 91–113. | MR
[17] Žampachová, E., Popela, P.: The selected PDE constrained stochastic programming problem. In: Proc. Risk, Quality and Reliability Conference, Ostrava 2007, pp. 233–237.
[18] Žampachová, E.: Approximate solution of PDE constrained stochastic optimization problems (in Czech). In: Proc. FME Junior Conference, Brno 2009, pp. 16–23.