Keywords: tropical convexity; fuzzy algebra; separation
@article{KYB_2010_46_3_a17,
author = {Nitica, Viorel and Sergeev, Serge\u{i}},
title = {On hyperplanes and semispaces in max{\textendash}min convex geometry},
journal = {Kybernetika},
pages = {548--557},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676090},
zbl = {1193.14076},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/}
}
Nitica, Viorel; Sergeev, Sergeĭ. On hyperplanes and semispaces in max–min convex geometry. Kybernetika, Tome 46 (2010) no. 3, pp. 548-557. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/
[1] Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence, RI 1993. | Zbl
[2] Cechlárová, K.: Eigenvectors in bottleneck algebra. Linear Algebra Appl. 175 (1992), 63–73. | MR
[3] Cohen, G., Gaubert, S., Quadrat, J. P., Singer, I.: Max-plus convex sets and functions. In: Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), AMS, Providence 2005, pp. 105–129. E-print arXiv:math/0308166. | MR | Zbl
[4] Develin, M., Sturmfels, B.: Tropical convexity. Documenta Math. 9 (2004), 1–27. E-print arXiv:math/0308254. | MR | Zbl
[5] Gaubert, S., Katz, R.: Max-plus convex geometry. In: Lecture Notes in Computer Science 4136, Springer, New York 2006. pp. 192–206. | DOI | MR | Zbl
[6] Gaubert, S., Sergeev, S.: Cyclic projectors and separation theorems in idempotent convex geometry. J. Math. Sci. 155 (2008), 6, 815–829. E-print arXiv:math/0706.3347. | DOI | MR | Zbl
[7] Gavalec, M.: Periodicity in Extremal Algebras. Gaudeamus, Hradec Králové 2004.
[8] Gavalec, M., Plávka, J.: Strong regularity of matrices in general max-min algebra. Linear Algebra Appl. 371 (2003), 241–254. | MR
[9] Golan, J.: Semirings and Their Applications. Kluwer, Dordrecht 2000. | MR | Zbl
[10] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach. Math. Notes 69 (2001), 5, 758–797. | MR | Zbl
[11] Nitica, V.: The structure of max-min hyperplanes. Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.08.022. | MR | Zbl
[12] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. I. Optimization 56 (2007), 171–205. | DOI | MR | Zbl
[13] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. II. Optimization 56 (2007), 293–303. | DOI | MR | Zbl
[14] Nitica, V., Singer, I.: Contributions to max-min convex geometry. I. Segments. Linear Algebra Appl. 428 (2008), 7, 1439–1459. | DOI | MR | Zbl
[15] Nitica, V., Singer, I.: Contributions to max-min convex geometry. II. Semispaces and convex sets. Linear Algebra Appl. 428 (2008), 8–9, 2085–2115. | MR | Zbl
[16] Sergeev, S. N.: Algorithmic complexity of a problem of idempotent convex geometry. Math. Notes 74 (2003), 6, 848–852. | DOI | MR | Zbl
[17] Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-Mat. Obzor 13 (1977), 179–201. | MR | Zbl
[18] Zimmermann, K.: Convexity in semimodules. Ekonom.-Mat. Obzor 17 (1981), 199–213. | MR | Zbl