On hyperplanes and semispaces in max–min convex geometry
Kybernetika, Tome 46 (2010) no. 3, pp. 548-557 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.
Classification : 08A72, 14T05, 52A01, 52A30
Keywords: tropical convexity; fuzzy algebra; separation
@article{KYB_2010_46_3_a17,
     author = {Nitica, Viorel and Sergeev, Serge\u{i}},
     title = {On hyperplanes and semispaces in max{\textendash}min convex geometry},
     journal = {Kybernetika},
     pages = {548--557},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2676090},
     zbl = {1193.14076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/}
}
TY  - JOUR
AU  - Nitica, Viorel
AU  - Sergeev, Sergeĭ
TI  - On hyperplanes and semispaces in max–min convex geometry
JO  - Kybernetika
PY  - 2010
SP  - 548
EP  - 557
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/
LA  - en
ID  - KYB_2010_46_3_a17
ER  - 
%0 Journal Article
%A Nitica, Viorel
%A Sergeev, Sergeĭ
%T On hyperplanes and semispaces in max–min convex geometry
%J Kybernetika
%D 2010
%P 548-557
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/
%G en
%F KYB_2010_46_3_a17
Nitica, Viorel; Sergeev, Sergeĭ. On hyperplanes and semispaces in max–min convex geometry. Kybernetika, Tome 46 (2010) no. 3, pp. 548-557. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a17/

[1] Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence, RI 1993. | Zbl

[2] Cechlárová, K.: Eigenvectors in bottleneck algebra. Linear Algebra Appl. 175 (1992), 63–73. | MR

[3] Cohen, G., Gaubert, S., Quadrat, J. P., Singer, I.: Max-plus convex sets and functions. In: Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), AMS, Providence 2005, pp. 105–129. E-print arXiv:math/0308166. | MR | Zbl

[4] Develin, M., Sturmfels, B.: Tropical convexity. Documenta Math. 9 (2004), 1–27. E-print arXiv:math/0308254. | MR | Zbl

[5] Gaubert, S., Katz, R.: Max-plus convex geometry. In: Lecture Notes in Computer Science 4136, Springer, New York 2006. pp. 192–206. | DOI | MR | Zbl

[6] Gaubert, S., Sergeev, S.: Cyclic projectors and separation theorems in idempotent convex geometry. J. Math. Sci. 155 (2008), 6, 815–829. E-print arXiv:math/0706.3347. | DOI | MR | Zbl

[7] Gavalec, M.: Periodicity in Extremal Algebras. Gaudeamus, Hradec Králové 2004.

[8] Gavalec, M., Plávka, J.: Strong regularity of matrices in general max-min algebra. Linear Algebra Appl. 371 (2003), 241–254. | MR

[9] Golan, J.: Semirings and Their Applications. Kluwer, Dordrecht 2000. | MR | Zbl

[10] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach. Math. Notes 69 (2001), 5, 758–797. | MR | Zbl

[11] Nitica, V.: The structure of max-min hyperplanes. Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.08.022. | MR | Zbl

[12] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. I. Optimization 56 (2007), 171–205. | DOI | MR | Zbl

[13] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. II. Optimization 56 (2007), 293–303. | DOI | MR | Zbl

[14] Nitica, V., Singer, I.: Contributions to max-min convex geometry. I. Segments. Linear Algebra Appl. 428 (2008), 7, 1439–1459. | DOI | MR | Zbl

[15] Nitica, V., Singer, I.: Contributions to max-min convex geometry. II. Semispaces and convex sets. Linear Algebra Appl. 428 (2008), 8–9, 2085–2115. | MR | Zbl

[16] Sergeev, S. N.: Algorithmic complexity of a problem of idempotent convex geometry. Math. Notes 74 (2003), 6, 848–852. | DOI | MR | Zbl

[17] Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-Mat. Obzor 13 (1977), 179–201. | MR | Zbl

[18] Zimmermann, K.: Convexity in semimodules. Ekonom.-Mat. Obzor 17 (1981), 199–213. | MR | Zbl