Keywords: semidefinite programming; central paths; penalty/barrier functions; Riemannian geometry; Cauchy trajectories
@article{KYB_2010_46_3_a15,
author = {L\'opez, Julio and Ram{\'\i}rez C., H\'ector},
title = {On the central paths and {Cauchy} trajectories in semidefinite programming},
journal = {Kybernetika},
pages = {524--535},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676088},
zbl = {1225.90097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a15/}
}
López, Julio; Ramírez C., Héctor. On the central paths and Cauchy trajectories in semidefinite programming. Kybernetika, Tome 46 (2010) no. 3, pp. 524-535. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a15/
[1] Alvarez, F., Bolte, J., Brahic, O.: Hessian Riemannian flows in convex programming. SIAM J. Control Optim. 43 (2004), 2, 477–501. | DOI | MR
[2] Alvarez, F., López, J., C., H. Ramírez: Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and classification by hyperplanes. To appear in Optimization Methods and Software.
[3] Auslender, A., C., H. Ramírez: Penalty and barrier methods for convex semidefinite programming. Math. Methods Oper. Res. 43 (2006), 2, 195–219. | MR
[4] Bayer, D. A., Lagarias, J. C.: The nonlinear geometry of linear programming I. Affine and projective scaling trajectories. Trans. Amer. Math. Soc. 314 (1989), 499–526. | MR | Zbl
[5] Neto, J. X. Cruz, Ferreira, O. P., Oliveira, P. R., Silva, R. C. M.: Central paths in semidefinite programming, generalized proximal point method and Cauchy trajectories in Riemannian manifolds. J. Optim. Theory Appl. 1 (2008), 1–16.
[6] Goemans, M. X.: Semidefinite programming in combinatorial optimization. Lectures on Mathematical Programming (ismp97). Math. Programming Ser. B 79 (1997), 1–3, 143–161. | DOI | MR | Zbl
[7] Dieudonné, J. A.: Foundations of Modern Analysis. Academic Press, New York 1969. | MR | Zbl
[8] Drummond, L. M. Graña, Peterzil, Y.: The central path in smooth convex semidefinite programming. Optimization 51 (2002), 207–233. | DOI | MR
[9] Halická, E., Klerk, E. de, Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12 (2002), 4, 1090–1099. | DOI | MR
[10] Iusem, A. N., Svaiter, B. F., Neto, J. X. da Cruz: Central paths, generalized proximal point methods and Cauchy trajectories in Riemannian manifolds. SIAM J. Control Optim. 37 (1999), 2, 566–588. | DOI | MR
[11] Klerk, E. de: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. (Applied Optimization 65.) Kluwer Academic Publishers, Dordrecht 2002. | MR | Zbl
[12] Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementary problem in symmetic matrices. SIAM J. Optim. 7 (1997), 86–125. | DOI | MR
[13] Lewis, A. S.: Convex Analysis on the Hermitian Matrices. SIAM J. Optim., 6 (1996), 1, 164–177. | DOI | MR | Zbl
[14] Lewis, A. S., Sendov, H. S.: Twice differentiable spectral functions. SIAM J. Matrix Anal. Appl. 23 (2001), 2, 368–386. | DOI | MR | Zbl
[15] Lojasiewicz, S.: Ensembles Semi-analitiques. Inst. Hautes Études Sci., Bures-sur-Yvette 1965.
[16] Petersen, P.: Riemannian Geometry. Springer-Verlag, New York 1998. | MR
[17] Seeger, A.: Convex analysis of spectrally defined matrix functions. SIAM J. Optim. 7 (1997), 679–696. | DOI | MR | Zbl
[18] Shapiro, A.: On Differentiability of Symmetric Matrix Valued Functions. Technical Report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2002.
[19] Todd, M.: Semidefinite optimization. Acta Numer. 10 (2001), 515–560. | DOI | MR | Zbl
[20] Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38 (1996), 1, 49–95. | DOI | MR | Zbl