Keywords: the optimal solution; $\varepsilon $-minimal solutions; level-minimal solutions; randomness
@article{KYB_2010_46_3_a14,
author = {Lachout, Petr},
title = {Approximative solutions of stochastic optimization problems},
journal = {Kybernetika},
pages = {513--523},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676087},
zbl = {1229.90110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a14/}
}
Lachout, Petr. Approximative solutions of stochastic optimization problems. Kybernetika, Tome 46 (2010) no. 3, pp. 513-523. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a14/
[1] Lachout, P.: Stability of stochastic optimization problem – nonmeasurable case. Kybernetika 44 (2008), 2, 259–276. | MR
[2] Lachout, P.: Stochastic optimization sensitivity without measurability. In: Proc. 15th MMEI held in Herlány, Slovakia (K. Cechlárová, M. Halická, V. Borbelóvá, and V. Lacko, eds.) 2007, pp. 131–136.
[3] Lachout, P., Liebscher, E., Vogel, S.: Strong convergence of estimators as $\varepsilon _n$-minimizers of optimization problems. Ann. Inst. Statist. Math. 57 (2005), 2, 291–313. | DOI | MR
[4] Lachout, P., Vogel, S.: On continuous convergence and epi-convergence of random functions. Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98. | MR
[5] Robinson, S. M.: Analysis of sample-path optimization. Math. Oper. Res. 21 (1996), 3, 513–528. | DOI | MR | Zbl
[6] Rockafellar, T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, Berlin 1998. | MR | Zbl
[7] Vajda, I., Janžura, M.: On asymptotically optimal estimates for general observations. Stoch. Process. Appl. 72 (1997), 1, 27–45. | DOI | MR
[8] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer, New York 1996. | MR