Measuring of second–order stochastic dominance portfolio efficiency
Kybernetika, Tome 46 (2010) no. 3, pp. 488-500 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a $\delta$-SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and $\delta$-SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new SSD and $\delta$-SSD portfolio efficiency measures as measures of the stability. We derive a non-linear and mixed-integer non-linear programs for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures, these new measures allow us to compare any two $\delta$-SSD efficient or SSD efficient portfolios. Finally, using historical US stock market data, we compute $\delta$-SSD and SSD portfolio efficiency measures of several SSD efficient portfolios.
In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a $\delta$-SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and $\delta$-SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new SSD and $\delta$-SSD portfolio efficiency measures as measures of the stability. We derive a non-linear and mixed-integer non-linear programs for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures, these new measures allow us to compare any two $\delta$-SSD efficient or SSD efficient portfolios. Finally, using historical US stock market data, we compute $\delta$-SSD and SSD portfolio efficiency measures of several SSD efficient portfolios.
Classification : 60E15, 91B28, 91B30, 91G10
Keywords: stochastic dominance; stability; SSD portfolio efficiency measure
@article{KYB_2010_46_3_a12,
     author = {Kopa, Milo\v{s}},
     title = {Measuring of second{\textendash}order stochastic dominance portfolio efficiency},
     journal = {Kybernetika},
     pages = {488--500},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2676085},
     zbl = {1193.91140},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a12/}
}
TY  - JOUR
AU  - Kopa, Miloš
TI  - Measuring of second–order stochastic dominance portfolio efficiency
JO  - Kybernetika
PY  - 2010
SP  - 488
EP  - 500
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a12/
LA  - en
ID  - KYB_2010_46_3_a12
ER  - 
%0 Journal Article
%A Kopa, Miloš
%T Measuring of second–order stochastic dominance portfolio efficiency
%J Kybernetika
%D 2010
%P 488-500
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a12/
%G en
%F KYB_2010_46_3_a12
Kopa, Miloš. Measuring of second–order stochastic dominance portfolio efficiency. Kybernetika, Tome 46 (2010) no. 3, pp. 488-500. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a12/

[1] Dentcheva, D., Henrion, R., Ruszczyński, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints. SIAM J. Optim. 18 (2007), 322–333. | DOI | MR

[2] Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14 (2003), 548–566. | DOI | MR

[3] Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Math. Programming 99 (2004), 329–350. | DOI | MR

[4] Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. J. Banking and Finance 30 (2006), 2, 433–451. | DOI

[5] Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods. SIAM J. Optim. 19 (2008), 3, 1326–1343. | DOI | MR

[6] Hadar, J., Russell, W. R.: Rules for ordering uncertain prospects. Amer. Econom. Rev. 59 (1969), 1, 25–34.

[7] Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. Rev. Econom. Stud. 36 (1969), 335–346. | DOI | Zbl

[8] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge University Press, Cambridge 1934. | Zbl

[9] Kopa, M., Chovanec, P.: A second-order stochastic dominance portfolio efficiency measure. Kybernetika 44 (2008), 2, 243–258. | MR | Zbl

[10] Kopa, M., Post, T.: A portfolio optimality test based on the first-order stochastic dominance criterion. J. Financial and Quantitative Analysis 44 (2009), 5, 1103–1124. | DOI

[11] Kopa, M.: An efficient LP test for SSD portfolio efficiency. Working paper, available at: http://ssrn.com/abstract=1340863

[12] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria. Management Sci. 50 (2004), 10, 1390–1406. | DOI

[13] Levy, H.: Stochastic Dominance: Investment Decision Making Under Uncertainty. Second edition. Springer Science, New York 2006. | MR | Zbl

[14] Luedtke, J.: New formulations for optimization under stochastic dominance constraints. SIAM J. Optim. 19 (2008), 3, 1433–1450. | DOI | MR | Zbl

[15] Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13 (2002), 60–78. | DOI | MR

[16] Pflug, G. Ch.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Probabilistic Constrained Optimization: Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Norwell MA 2000, pp. 278–287. | MR | Zbl

[17] Post, T.: Empirical tests for stochastic dominance efficiency. J. Finance 58 (2003), 1905–1932. | DOI

[18] Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions. Math. Programming, Series B 108 (2006), 541–569. | DOI | MR | Zbl

[19] Römisch, W.: Stability of stochastic programming problems. In: Stochastic Programming. Handbooks in Operations Research and Management Science 10 (A. Ruszczyński and A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. | MR

[20] Rothschild, M., Stiglitz, J. E.: Rules for ordering uncertain prospects. J. Economic Theory 2 (1969), 225–243.

[21] Ruszczyński, A., Vanderbei, R. J.: Frontiers of stochastically nondominated portfolios. Econometrica 71 (2003), 4, 1287–1297. | DOI | MR

[22] Uryasev, S., Rockafellar, R. T.: Conditional value-at-risk for general loss distributions. J. Banking and Finance 26 (2002), 1443–1471. | DOI

[23] Whitmore, G. A.: Third degree stochastic dominance. Amer. Econom. Rev. 60 (1970), 457–459.