Keywords: mean-CVaR model; mixed-integer value function; stability analysis; contamination techniques; derivatives of optimal value function
@article{KYB_2010_46_3_a1,
author = {Branda, Martin},
title = {Local stability and differentiability of the {Mean{\textendash}Conditional} {Value} at {Risk} model defined on the mixed{\textendash}integer loss functions},
journal = {Kybernetika},
pages = {362--373},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2676075},
zbl = {1202.90203},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a1/}
}
TY - JOUR AU - Branda, Martin TI - Local stability and differentiability of the Mean–Conditional Value at Risk model defined on the mixed–integer loss functions JO - Kybernetika PY - 2010 SP - 362 EP - 373 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a1/ LA - en ID - KYB_2010_46_3_a1 ER -
Branda, Martin. Local stability and differentiability of the Mean–Conditional Value at Risk model defined on the mixed–integer loss functions. Kybernetika, Tome 46 (2010) no. 3, pp. 362-373. http://geodesic.mathdoc.fr/item/KYB_2010_46_3_a1/
[1] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Akademie-Verlag, Berlin 1982. | Zbl
[2] Billingsley, P.: Convergence of Probability Measures. (Wiley Series in Probability and Statistics.) Second edition. Wiley, New York 1999. | MR | Zbl
[3] Blair, C. E., Jeroslow, R. G.: The value function of a mixed integer program: I. Discrete Mathematics 19 (1977), 121–138. | DOI | MR | Zbl
[4] Dobiáš, P.: Contamination for stochastic integer programs. Bulletin of the Czech Econometric Society 10 (2003), No. 18.
[5] Dupačová, J.: Stability in stochastic programming with recourse. Contaminated distributions. Mathematical Programming Study 27 (1986), 133–144. | DOI | MR
[6] Dupačová, J.: Stability and sensitivity-analysis for stochastic programming. Ann. Oper. Res. 27 (1990), 115–142. | DOI | MR
[7] Dupačová, J.: Output analysis for approximated stochastic programs. In: Stochastic Optimization: Algorithms and Applications (S. Uryasev and P. M. Pardalos, Eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 1–29. | MR
[8] Dupačová, J.: Risk objectives in two-stage stochastic programming models. Kybernetika 44 (2008), 2, 227–242. | MR
[9] Dupačová, J., Polívka, J.: Stress testing for VaR and CVaR. Quantitative Finance 27 (2007), 4, 411–421. | DOI | MR
[10] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht 1999. | MR | Zbl
[11] Rockafellar, T. R., Uryasev, S.: Conditional value-at-risk for genera loss distributions. J. Banking and Finance 26 (2002), 1443–1471. | DOI
[12] Römisch, W.: Stability of Stochastic Programming Problems. In: Stochastic Programming (A. Ruszczynski and A. Shapiro eds.), Handbooks in Operations Research and Management Science Vol. 10, Elsevier, Amsterdam (2003), 483-554. | MR
[13] Römisch, W., Schultz, R.: Multistage stochastic integer programming: an introduction. In: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, and J. Rambau, eds.), Springer-Verlag, Berlin 2001, pp. 581–600.
[14] Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Mathematical Programming 26 (1995), 73–89. | DOI | MR | Zbl
[15] Schultz, R.: Stochastic programming with integer variables. Mathematical Programming, Ser. B 97 (2003), 285–309. | MR | Zbl
[16] Schultz, R., Tiedemann, S.: Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, Ser. B 105 (2006), 365–386. | DOI | MR | Zbl
[17] Szegö, G.: Risk Measures for the 21st Century. Wiley, Chichester 2004.
[18] Wallace, S. W., Ziemba, W. T.: Applications of Stochastic Programming. (MPS-SIAM Book Series on Optimization, Volume 5.) SIAM Philadelpia 2005. | Zbl