Keywords: optimal control; preconditioning; partial differential equations
@article{KYB_2010_46_2_a8,
author = {Rees, Tyrone and Stoll, Martin and Wathen, Andy},
title = {All-at-once preconditioning in {PDE-constrained} optimization},
journal = {Kybernetika},
pages = {341--360},
year = {2010},
volume = {46},
number = {2},
mrnumber = {2663605},
zbl = {1195.65083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a8/}
}
Rees, Tyrone; Stoll, Martin; Wathen, Andy. All-at-once preconditioning in PDE-constrained optimization. Kybernetika, Tome 46 (2010) no. 2, pp. 341-360. http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a8/
[1] Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Software 33 (2007), 24, 27. | DOI | MR
[2] Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14 (2005), 1–137. | DOI | MR | Zbl
[3] Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999), 1176–1194 (electronic). | DOI | MR | Zbl
[4] Bertsekas, D. P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20 (1982), 221–246. | DOI | MR | Zbl
[5] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp 50 (1988), 1–17. | DOI | MR | Zbl
[6] Collis, S. S., Heinkenschloss, M.: Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems. Tech. Rep. TR02–01, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005–1892, 2002.
[7] Elman, H. C.: Multigrid and Krylov subspace methods for the discrete Stokes equations. In: Seventh Copper Mountain Conference on Multigrid Methods (N. D. Melson, T. A. Manteuffel, S. F. McCormick, and C. C. Douglas, eds.), Vol. CP 3339, Hampton 1996, NASA, pp. 283–299. | Zbl
[8] Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. | MR | Zbl
[9] Engel, M., Griebel, M.: A multigrid method for constrained optimal control problems: SFB-Preprint 406, Sonderforschungsbereich 611, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008. Submitted.
[10] Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.: ML 5.0 smoothed aggregation user’s guide. Tech. Rep. SAND2006-2649, Sandia National Laboratories, 2006.
[11] Gill, P. E., Murray, W., Wright, M. H.: Practical Optimization. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1981. | MR | Zbl
[12] Golub, G. H., Varga, R. S.: Chebyshev semi-iterative methods. successive over-relaxation iterative methods, and second order Richardson iterative methods. I. Numer. Math. 3 (1961), 147–156. | DOI | MR | Zbl
[13] Golub, G. H., Varga, R. S.: Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second order Richardson iterative methods. II. Numer. Math. 3 (1961), 157–168. | DOI | MR
[14] Greenbaum, A.: Iterative Methods for Solving Linear Systems. Vol. 17 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1997. | MR | Zbl
[15] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand 49 (1952), 409–436 (1953)???. | DOI | MR | Zbl
[16] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002), 865–888. | DOI | MR
[17] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer-Verlag, New York 2009. | MR | Zbl
[18] Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. Vol. 15 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2008. | MR | Zbl
[19] Murphy, M. F., Golub, G. H., Wathen, A. J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21 (2000), 1969–1972. | DOI | MR | Zbl
[20] Nocedal, J., Wright, S. J.: Numerical Optimization. (Springer Series in Operations Research.) Springer-Verlag, New York 1999. | MR | Zbl
[21] Paige, C. C., Saunders, M. A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975), 617–629. | DOI | MR
[22] Peisker, P., Braess, D.: A conjugate gradient method and a multigrid algorithm for Morley’s finite element approximation of the biharmonic equation. Numer. Math. 50 (1987), 567–586. | DOI | MR | Zbl
[23] Rees, T., Dollar, H. S., Wathen, A. J.: Optimal solvers for PDE-constrained optimization. SIAM J. Sci. Comput. 32 (2010), 271–298. | DOI | MR
[24] Rees, T., Stoll, M.: Block triangular preconditioners for PDE constrained optimization. Numer. Linear Algebra Appl., (2009), to appear. | MR
[25] Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia 2003. | MR | Zbl
[26] Stoll, M.: Solving Linear Systems Using the Adjoint. PhD. Thesis, University of Oxford 2009.
[27] Stoll, M., Wathen, A.: Preconditioning for active set and projected gradient methods as semi-smooth Newton methods for PDE-constrained optimization with control constraints. Submitted.
[28] Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg Verlag, Wiesbaden 2005.
[29] Wathen, A. J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7 (1987), 449–457. | DOI | MR | Zbl
[30] Wathen, A. J., Rees, T.: Chebyshev semi-iteration in preconditioning for problems including the mass matrix. Electron. Trans. Numer. Anal. 34 (2008–2009), 125–135. | MR | Zbl