Hybrid parallelization of an adaptive finite element code
Kybernetika, Tome 46 (2010) no. 2, pp. 316-327 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the large problem and the smaller sub-problems, sufficiently fast we make use of a hierarchical mesh structure. The partitioning is done on a coarser mesh level, resulting in a very fast method that shows good computational balancing results. Numerical experiments show that both parallelization methods achieve good scalability in computing solution of nonlinear, time dependent, higher order PDEs on large domains. The parallelization is realized in the adaptive finite element software AMDiS.
We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the large problem and the smaller sub-problems, sufficiently fast we make use of a hierarchical mesh structure. The partitioning is done on a coarser mesh level, resulting in a very fast method that shows good computational balancing results. Numerical experiments show that both parallelization methods achieve good scalability in computing solution of nonlinear, time dependent, higher order PDEs on large domains. The parallelization is realized in the adaptive finite element software AMDiS.
Classification : 35K55, 65M55, 65M60, 65N30, 65Y05
Keywords: adaptive finite elements; parallelization; OpenMP; MPI
@article{KYB_2010_46_2_a6,
     author = {Voigt, Axel and Witkowski, Thomas},
     title = {Hybrid parallelization of an adaptive finite element code},
     journal = {Kybernetika},
     pages = {316--327},
     year = {2010},
     volume = {46},
     number = {2},
     mrnumber = {2663603},
     zbl = {1195.65135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a6/}
}
TY  - JOUR
AU  - Voigt, Axel
AU  - Witkowski, Thomas
TI  - Hybrid parallelization of an adaptive finite element code
JO  - Kybernetika
PY  - 2010
SP  - 316
EP  - 327
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a6/
LA  - en
ID  - KYB_2010_46_2_a6
ER  - 
%0 Journal Article
%A Voigt, Axel
%A Witkowski, Thomas
%T Hybrid parallelization of an adaptive finite element code
%J Kybernetika
%D 2010
%P 316-327
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a6/
%G en
%F KYB_2010_46_2_a6
Voigt, Axel; Witkowski, Thomas. Hybrid parallelization of an adaptive finite element code. Kybernetika, Tome 46 (2010) no. 2, pp. 316-327. http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a6/

[1] Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase-field crystal (PFC) model. Phil. Mag. Lett. 87 (2007), 813–820. | DOI

[2] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2009).

[3] Davis, T. A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30 (2004), 2 196–199. | DOI | MR

[4] Dziuk, G., Elliott, C. M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007), 262–292. | DOI | MR | Zbl

[5] Elder, K. R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88 (2002), 245701. | DOI

[6] Gottschling, P., Wise, D. S., Adams, M. D.: Representation-transparent matrix algorithms with scalable performance. In: ICS ’07: Proc. 21st Annual Internat. Conference on Supercomputing 2007, pp. 116–125.

[7] Kotakemori, H., Hasegawa, H.: Performance evaluation of a parallel iterative method library using OpenMP. In: ACM Proc. Eighth Internat. Conference on High-Performance Computing in Asia–Pacific Region 2005, pp. 432–437.

[8] Li, B., Lowengrub, J., Rätz, A., Voigt, A.: Geometric evolution laws for thin crystalline films: Modeling and numerics. Comm. Comput. Phys. 6 (2009), 433–482. | MR

[9] Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elastically stressed films under deposition by a diffuse interface model. J. Comput. Phys. 214 (2006), 187–208. | DOI | MR

[10] Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint graph partitioning. Concurrency and Computation: Practice and Experience 14 (2002), 3, 219–240. | DOI | Zbl

[11] Schmidt, A., Siebert, K. G.: Design of adaptive finite element software. (Lecture Notes in CSE 42.) Springer, Heidelberg 2005. | MR | Zbl

[12] Teeffelen, S. van, Backofen, R., Voigt, A., Löwen, H.: Derivation of the phase field crystal model for colloidal solidification. Phys. Rev. E. 79 (2009), 051404. | DOI

[13] Vey, S., Voigt, A.: Adaptive full domain covering meshes for parallel finite element computations. Computing 81 (2007), 53–75. | DOI | MR | Zbl

[14] Vey, S., Voigt, A.: AMDiS – adaptive multidimensional simulations. Comput. Visual Sci. 10 (2007), 57–67. | DOI | MR