Keywords: CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology
@article{KYB_2010_46_2_a4,
author = {Prignitz, Rodolphe and B\"ansch, Eberhard},
title = {Numerical simulation of suspension induced rheology},
journal = {Kybernetika},
pages = {281--293},
year = {2010},
volume = {46},
number = {2},
mrnumber = {2663601},
zbl = {pre05773709},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/}
}
Prignitz, Rodolphe; Bänsch, Eberhard. Numerical simulation of suspension induced rheology. Kybernetika, Tome 46 (2010) no. 2, pp. 281-293. http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/
[1] Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991), 181–191. doi10.1016/0899-8248(91)90006-G. | DOI | MR
[2] Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenian. 67 (1997), 1, 101–114. | MR
[3] Bönisch, S., Heuveline, V.: On the numerical simulation of the instationary free fall of a solid in a fluid. 1. The Newtonian case. Comput. Fluids 36 (2007), 1434–1445. | DOI
[4] Chwang, A. T., Wu, T. Yao-Tsu: Hydromechanics of low-reynolds-number flow. Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (1975), 787–815. | DOI | MR
[5] Einstein, A.: Untersuchungen über die Theorie der Brownschen Bewegung. Verlag Harri Deutsch, 1905. | Zbl
[6] Feng, J., Hu, H. H., Joseph, D. D.: Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261 (1994), 95–134. | DOI | Zbl
[7] Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Internat. J. Multiphase Flow 25 (1999), 755–794. doi10.1016/S0301-9322(98)00048-2. | DOI | Zbl
[8] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comp. 73 (2004), 1719–1737. | DOI | MR | Zbl
[9] Hu, H. H.: Direct simulation of flows of solid-liquid mixtures. Internat. J. Multiphase Flow 22 (1996), 2, 335–352. | DOI | Zbl
[10] Jeffrey, D. J., Acrivos, A.: The rheological properties of suspensions of rigid particles. AIChe J. 22 (1976), 417–432. | DOI
[11] Martys, N. S., Mountain, R. D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59 (1999), 3, 3733–3736. | DOI
[12] Titcombe, M. S., Ward, M. J., Kropinski, M. C.: A hybrid method for low reynolds number flow past an asymmetric cylindrical body. SIAM J. Appl. Math. 55 (1994), 1484–1510. | Zbl
[13] Tritton, D. J.: Experiments on the flow past a circular cylinder at low reynolds numbers. J. Fluid Mech. 6 (1959), 547–567. | DOI
[14] Wan, D., Turek, S.: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. J. Comput. Phys. 222 (2007), 28–56. | DOI | MR