Numerical simulation of suspension induced rheology
Kybernetika, Tome 46 (2010) no. 2, pp. 281-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle.
Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle.
Classification : 70E55, 76D05, 76M10, 76T20
Keywords: CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology
@article{KYB_2010_46_2_a4,
     author = {Prignitz, Rodolphe and B\"ansch, Eberhard},
     title = {Numerical simulation of suspension induced rheology},
     journal = {Kybernetika},
     pages = {281--293},
     year = {2010},
     volume = {46},
     number = {2},
     mrnumber = {2663601},
     zbl = {pre05773709},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/}
}
TY  - JOUR
AU  - Prignitz, Rodolphe
AU  - Bänsch, Eberhard
TI  - Numerical simulation of suspension induced rheology
JO  - Kybernetika
PY  - 2010
SP  - 281
EP  - 293
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/
LA  - en
ID  - KYB_2010_46_2_a4
ER  - 
%0 Journal Article
%A Prignitz, Rodolphe
%A Bänsch, Eberhard
%T Numerical simulation of suspension induced rheology
%J Kybernetika
%D 2010
%P 281-293
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/
%G en
%F KYB_2010_46_2_a4
Prignitz, Rodolphe; Bänsch, Eberhard. Numerical simulation of suspension induced rheology. Kybernetika, Tome 46 (2010) no. 2, pp. 281-293. http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a4/

[1] Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991), 181–191. doi10.1016/0899-8248(91)90006-G. | DOI | MR

[2] Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenian. 67 (1997), 1, 101–114. | MR

[3] Bönisch, S., Heuveline, V.: On the numerical simulation of the instationary free fall of a solid in a fluid. 1. The Newtonian case. Comput. Fluids 36 (2007), 1434–1445. | DOI

[4] Chwang, A. T., Wu, T. Yao-Tsu: Hydromechanics of low-reynolds-number flow. Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (1975), 787–815. | DOI | MR

[5] Einstein, A.: Untersuchungen über die Theorie der Brownschen Bewegung. Verlag Harri Deutsch, 1905. | Zbl

[6] Feng, J., Hu, H. H., Joseph, D. D.: Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261 (1994), 95–134. | DOI | Zbl

[7] Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Internat. J. Multiphase Flow 25 (1999), 755–794. doi10.1016/S0301-9322(98)00048-2. | DOI | Zbl

[8] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comp. 73 (2004), 1719–1737. | DOI | MR | Zbl

[9] Hu, H. H.: Direct simulation of flows of solid-liquid mixtures. Internat. J. Multiphase Flow 22 (1996), 2, 335–352. | DOI | Zbl

[10] Jeffrey, D. J., Acrivos, A.: The rheological properties of suspensions of rigid particles. AIChe J. 22 (1976), 417–432. | DOI

[11] Martys, N. S., Mountain, R. D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59 (1999), 3, 3733–3736. | DOI

[12] Titcombe, M. S., Ward, M. J., Kropinski, M. C.: A hybrid method for low reynolds number flow past an asymmetric cylindrical body. SIAM J. Appl. Math. 55 (1994), 1484–1510. | Zbl

[13] Tritton, D. J.: Experiments on the flow past a circular cylinder at low reynolds numbers. J. Fluid Mech. 6 (1959), 547–567. | DOI

[14] Wan, D., Turek, S.: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. J. Comput. Phys. 222 (2007), 28–56. | DOI | MR