Keywords: discontinuous Galerkin method; compressible Navier–Stokes equations; linear algebra problems; preconditioning; stopping criterion; choice of the time step
@article{KYB_2010_46_2_a3,
author = {Dolej\v{s}{\'\i}, V{\'\i}t},
title = {On the solution of linear algebraic systems arising from the semi{\textendash}implicit {DGFE} discretization of the compressible {Navier{\textendash}Stokes} equations},
journal = {Kybernetika},
pages = {260--280},
year = {2010},
volume = {46},
number = {2},
mrnumber = {2663600},
zbl = {pre05773708},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a3/}
}
TY - JOUR AU - Dolejší, Vít TI - On the solution of linear algebraic systems arising from the semi–implicit DGFE discretization of the compressible Navier–Stokes equations JO - Kybernetika PY - 2010 SP - 260 EP - 280 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a3/ LA - en ID - KYB_2010_46_2_a3 ER -
%0 Journal Article %A Dolejší, Vít %T On the solution of linear algebraic systems arising from the semi–implicit DGFE discretization of the compressible Navier–Stokes equations %J Kybernetika %D 2010 %P 260-280 %V 46 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a3/ %G en %F KYB_2010_46_2_a3
Dolejší, Vít. On the solution of linear algebraic systems arising from the semi–implicit DGFE discretization of the compressible Navier–Stokes equations. Kybernetika, Tome 46 (2010) no. 2, pp. 260-280. http://geodesic.mathdoc.fr/item/KYB_2010_46_2_a3/
[1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 4, 742–760. | DOI | MR | Zbl
[2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 5, 1749–1779. | DOI | MR | Zbl
[3] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279. | DOI | MR | Zbl
[4] Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flow. In: Discontinuous Galerkin Method: Theory, Computations and Applications (B. Cockburn, G. E. Karniadakis, and C. W. Shu, eds.), (Lecture Notes in Computat. Sci. Engrg. 11.) Springer-Verlag, Berlin 2000, pp. 113–123. | MR
[5] Baumann, C. E., Oden, J. T.: A discontinuous $hp$ finite element method for the Euler and Navier-Stokes equations. Internat. J. Numer. Methods Fluids 31 (1999), 1, 79–95. | DOI | MR | Zbl
[6] Ciarlet, P. G.: The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam – New York – Oxford 1979. | MR
[7] Cockburn, B., Hou, S., Shu, C. W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element for conservation laws IV: The multi-dimensional case. Math. Comp. 54 (1990), 545–581. | MR
[8] Dawson, C. N., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport. Comput. Meth. Appl. Mech. Engrg. 193 (2004), 2565–2580. | DOI | MR | Zbl
[9] Dolejší, V.: On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations. Internat. J. Numer. Methods Fluids 45 (2004), 1083–1106. | DOI | MR
[10] Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4 (2008), 2, 231–274. | MR
[11] Dolejší, V., Kůs, P.: Adaptive backward difference formula – discontinuous Galerkin finite element method for the solution of conservation laws. Internat. J. Numer. Methods Engrg. 73 (2008), 12, 1739–1766. | DOI | MR
[12] Dolejší, V.: Discontinuous Galerkin method for the numerical simulation of unsteady compressible flow. WSEAS Trans. on Systems 5 (2006), 5, 1083–1090.
[13] Dolejší, V., Feistauer, M.: Semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198 (2004), 2, 727–746. | DOI | MR
[14] Dumbser, M., Munz, C. D.: Building blocks for arbitrary high-order discontinuous Galerkin methods. J. Sci. Comput. 27 (2006), 215–230. | DOI | MR
[15] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford 2003. | MR
[16] Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224 (2007), 1, 208–221. | DOI | MR
[17] Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time dependent domains. Math. Comput. Simulations 80 (2010), 8, 1612-1623. | DOI | MR
[18] Hairer, E., Norsett, S. P., Wanner, G.: Solving ordinary differential equations I, Nonstiff problems. (Springer Series in Computational Mathematics No. 8.) Springer Verlag, Berlin 2000. | MR
[19] Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: Method formulation. Internat. J. Numer. Anal. Model. 1 (2006), 1–20. | MR | Zbl
[20] Klaij, C. M., Vegt, J. van der, Ven, H. V. der: Pseudo-time stepping for space-time discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 219 (2006), 2, 622–643. | DOI | MR
[21] Lörcher, F., Gassner, G., Munz, C. D.: A discontinuous Galerkin scheme based on a spacetime expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32 (2007), 2, 175–199. | DOI | MR
[22] Rivière, B., Wheeler, M. F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3 (1999), 3-4, 337–360. | MR
[23] Watkins, D. S.: Fundamentals of Matrix Computations. (Pure and Applied Mathematics, Wiley-Interscience Series of Texts, Monographs, and Tracts.) John Wiley , New York 2002. | MR