Keywords: discrete copulas; associativity; permutations; independence
@article{KYB_2010_46_1_a9,
author = {Gonz\'alez-Barrios, Jos\'e M.},
title = {Statistical aspects of associativity for copulas},
journal = {Kybernetika},
pages = {149--177},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666900},
zbl = {1187.62094},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a9/}
}
González-Barrios, José M. Statistical aspects of associativity for copulas. Kybernetika, Tome 46 (2010) no. 1, pp. 149-177. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a9/
[1] I. Aguiló, J. Suñer, and J. Torrens: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems (2007), doi: 10.1016/j.fss2007.10.004. | MR
[2] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006. | MR
[3] P. Deheuvels: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292. | MR | Zbl
[4] A. Erdely, J. M. González-Barrios, and R. B. Nelsen: Symmetries of random discrete copulas. Kybernetika 44 (2008), 6, 846–863. | MR
[5] T. P. Hettmansperger: Statistical Inference Based on Ranks. Wiley, New York 1984. | MR | Zbl
[6] S. Jenei: On the convex combination of left-continuous $t$-norms. Aequationes Mathematicae 72 (2006), 47–59. | MR | Zbl
[7] S. Jenei: On the geometry of associativity. Semigroup Forum 74 (2007), 439–466. | MR | Zbl
[8] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR
[9] E. P. Klement and R. Mesiar: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005. | MR
[10] E. P. Klement and R. Mesiar: How non-symmetric can a copula be? Comment. Math. Univ. Carolinae 47 (2006), 1, 141–148. | MR
[11] A. Kolesárová, R. Mesiar, J. Mordelová, and C. Sempi: Discrete Copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705.
[12] A. Kolesárová and J. Mordelová: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501.
[13] E. L. Lehmann: Nonparametric Statistical Methods Based on Ranks. Revised first edition. Springer, New York 2006. | MR
[14] G. Mayor, J. Suñer, and J. Torrens: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477.
[15] G. Mayor, J. Suñer, and J. Torrens: Sklar’s Theorem in finite settings. IEEE Trans. Fuzzy Systems 15 (2007), 410–416.
[16] R. Mesiar: Discrete copulas – what they are. In: Prof. Joint EUSFLAT-LFA 2005 (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930.
[17] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006. | MR | Zbl
[18] R. B. Nelsen: Extremes of nonexchangeability. Statist. Papers 48 (2007), 329–336. | MR | Zbl
[19] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR