Weighted halfspace depth
Kybernetika, Tome 46 (2010) no. 1, pp. 125-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.
Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.
Classification : 60D05, 62G05, 62G15, 62G99, 62H05
Keywords: data depth; nonparametric multivariate analysis; strong consistency of depth; mixture of distributions
@article{KYB_2010_46_1_a8,
     author = {Hlubinka, Daniel and Kot{\'\i}k, Luk\'a\v{s} and Venc\'alek, Ond\v{r}ej},
     title = {Weighted halfspace depth},
     journal = {Kybernetika},
     pages = {125--148},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2666899},
     zbl = {1189.62088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a8/}
}
TY  - JOUR
AU  - Hlubinka, Daniel
AU  - Kotík, Lukáš
AU  - Vencálek, Ondřej
TI  - Weighted halfspace depth
JO  - Kybernetika
PY  - 2010
SP  - 125
EP  - 148
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a8/
LA  - en
ID  - KYB_2010_46_1_a8
ER  - 
%0 Journal Article
%A Hlubinka, Daniel
%A Kotík, Lukáš
%A Vencálek, Ondřej
%T Weighted halfspace depth
%J Kybernetika
%D 2010
%P 125-148
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a8/
%G en
%F KYB_2010_46_1_a8
Hlubinka, Daniel; Kotík, Lukáš; Vencálek, Ondřej. Weighted halfspace depth. Kybernetika, Tome 46 (2010) no. 1, pp. 125-148. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a8/

[1] A. DasGupta, J. K. Ghosh, and M. M. Zen: A new general method for constructing confidence sets in arbitrary dimensions with applications. Ann. Statist. 23 (1995), 1408–1432. | MR

[2] D. Donoho and M. Gasko: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 (1992), 1803–1827. | MR

[3] R. Y. Liu: On a notion of data depth based on random simplices. Ann. Statist. 18 (1990), 405–414. | MR | Zbl

[4] R. Y. Liu, R. Serfling, and D. L. Souvaine (eds.): DIMACS; Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications. American Mathematical Society, Providence RI 2006. | MR

[5] J. Matoušek: Computing the center of planar point sets. In: DIMACS; Discrete and Computational Geometry (J. E. Goodman, R. Pollack, and W. Steiger, eds.). American Mathematical Society, 1992. | MR

[6] I. Mizera: On depth and deep points: a calculus. Ann. Statist. 30 (2002), 1681–1736. | MR | Zbl

[7] P. Rousseeuw and I. Ruts: Algorithm AS307: bivariate location depth. J. Roy. Statist. Soc.-C 45 (1996), 516–526.

[8] J. Tukey: Mathematics and picturing data. In: Proc. 1975 International Congress of Mathematics, Vol. 2 (1975), pp. 523–531. | MR

[9] S. van de Geer: Empirical Processes and M-Estimates. Cambridge, 2000.

[10] Y. Zuo and R. Serfling: General notion of statistical depth function. Ann. Statist. 28 (2000), 461–482. | MR

[11] Y. Zuo and R. Serfling: Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. 28 (2000), 483–499. | MR