Keywords: non-positive autocorrelations; linear process
@article{KYB_2010_46_1_a7,
author = {Do\v{s}l\'a, \v{S}\'arka and And\v{e}l, Ji\v{r}{\'\i}},
title = {Weakly stationary processes with non{\textendash}positive autocorrelations},
journal = {Kybernetika},
pages = {114--124},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666898},
zbl = {1187.62142},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/}
}
Došlá, Šárka; Anděl, Jiří. Weakly stationary processes with non–positive autocorrelations. Kybernetika, Tome 46 (2010) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/
[1] J. Beran: Statistics for Long-Memory Processes. Chapman & Hall, New York 1994. | MR | Zbl
[2] L. Bondesson: On a minimum correlation problem. Statist. Probab. Lett. 62 (2003), 361–370. | MR | Zbl
[3] P. Brockwell and R. Davis: Time Series: Theory and Methods. Second edition. Springer, New York 1991. | MR
[4] I. Gichman and A. V. Skorochod: Vvedenije v teoriju slučajnych processov. Nauka, Moskva 1965.
[5] Y. Katznelson: An Introduction to Harmonic Analysis. Third edition. Cambridge University Press, Cambridge 2004. | MR | Zbl
[6] K. Meister and L. Bondesson: Some Real Time Sampling Methods. Technical Report 2, Dept. of Math. Statist., Umeåa Univ. 2001.
[7] A. Zygmund: Trigonometric Series. Third edition. Cambridge University Press, Cambridge 2002. | MR | Zbl