Weakly stationary processes with non–positive autocorrelations
Kybernetika, Tome 46 (2010) no. 1, pp. 114-124 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with real weakly stationary processes ${\{X_t,\ t\in\mathbb{Z}\}}$ with non-positive autocorrelations $\{r_k\}$, i. e.~it is assumed that $r_k\le 0$ for all $k=1,2,\dots$. We show that such processes have some special interesting properties. In particular, it is shown that each such a process can be represented as a linear process. Sufficient conditions under which the resulting process satisfies $r_k\le 0$ for all $k=1,2,\dots$ are provided as well.
We deal with real weakly stationary processes ${\{X_t,\ t\in\mathbb{Z}\}}$ with non-positive autocorrelations $\{r_k\}$, i. e.~it is assumed that $r_k\le 0$ for all $k=1,2,\dots$. We show that such processes have some special interesting properties. In particular, it is shown that each such a process can be represented as a linear process. Sufficient conditions under which the resulting process satisfies $r_k\le 0$ for all $k=1,2,\dots$ are provided as well.
Classification : 60G10, 60G99, 60K99, 62H20, 62M10
Keywords: non-positive autocorrelations; linear process
@article{KYB_2010_46_1_a7,
     author = {Do\v{s}l\'a, \v{S}\'arka and And\v{e}l, Ji\v{r}{\'\i}},
     title = {Weakly stationary processes with non{\textendash}positive autocorrelations},
     journal = {Kybernetika},
     pages = {114--124},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2666898},
     zbl = {1187.62142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/}
}
TY  - JOUR
AU  - Došlá, Šárka
AU  - Anděl, Jiří
TI  - Weakly stationary processes with non–positive autocorrelations
JO  - Kybernetika
PY  - 2010
SP  - 114
EP  - 124
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/
LA  - en
ID  - KYB_2010_46_1_a7
ER  - 
%0 Journal Article
%A Došlá, Šárka
%A Anděl, Jiří
%T Weakly stationary processes with non–positive autocorrelations
%J Kybernetika
%D 2010
%P 114-124
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/
%G en
%F KYB_2010_46_1_a7
Došlá, Šárka; Anděl, Jiří. Weakly stationary processes with non–positive autocorrelations. Kybernetika, Tome 46 (2010) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a7/

[1] J. Beran: Statistics for Long-Memory Processes. Chapman & Hall, New York 1994. | MR | Zbl

[2] L. Bondesson: On a minimum correlation problem. Statist. Probab. Lett. 62 (2003), 361–370. | MR | Zbl

[3] P. Brockwell and R. Davis: Time Series: Theory and Methods. Second edition. Springer, New York 1991. | MR

[4] I. Gichman and A. V. Skorochod: Vvedenije v teoriju slučajnych processov. Nauka, Moskva 1965.

[5] Y. Katznelson: An Introduction to Harmonic Analysis. Third edition. Cambridge University Press, Cambridge 2004. | MR | Zbl

[6] K. Meister and L. Bondesson: Some Real Time Sampling Methods. Technical Report 2, Dept. of Math. Statist., Umeåa Univ. 2001.

[7] A. Zygmund: Trigonometric Series. Third edition. Cambridge University Press, Cambridge 2002. | MR | Zbl