Keywords: optimal quantization; uniform distribution; Rényi-$\alpha $-entropy
@article{KYB_2010_46_1_a6,
author = {Kreitmeier, Wolfgang},
title = {Optimal quantization for the one{\textendash}dimensional uniform distribution with {R\'enyi-}$\alpha$-entropy constraints},
journal = {Kybernetika},
pages = {96--113},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666897},
zbl = {1187.94018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a6/}
}
Kreitmeier, Wolfgang. Optimal quantization for the one–dimensional uniform distribution with Rényi-$\alpha$-entropy constraints. Kybernetika, Tome 46 (2010) no. 1, pp. 96-113. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a6/
[1] J. Aczél and Z. Daróczy: On Measures of Information and Their Characterizations. (Mathematics in Science and Engineering Vol. 115.) Academic Press, London 1975. | MR
[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty: Nonlinear Programming, Theory and Algorithms. Wiley, New York 1993. | MR
[3] C. Beck and F. Schlögl: Thermodynamics of Chaotic Systems. Cambridge University Press, Cambridge 1993. | MR
[4] M. Behara: Additive and Nonadditive Measures of Entropy. Wiley, New Delhi 1990. | MR | Zbl
[5] J. C. Fort and G. Pagès: Asymptotics of optimal quantizers for some scalar distributions. J. Comput. Appl. Math. 146 (2002), 253–275. | MR
[6] A. Gersho and R. M. Gray: Vector Quantization and Signal Compression. Kluwer, Boston 1992.
[7] S. Graf and H. Luschgy: The quantization of the Cantor distribution. Math. Nachr. 183 (1997), 113–133. | MR
[8] S. Graf and H. Luschgy: Foundations of Quantization for Probability Distributions. (Lecture Notes in Computer Science 1730.) Springer, Berlin 2000. | MR
[9] R. M. Gray and D. Neuhoff: Quantization. IEEE Trans. Inform. Theory 44 (1998), 2325–2383. | MR
[10] M. Grendar: Entropy and effective support size. Entropy 8 (2006), 169–174. | MR | Zbl
[11] A. György and T. Linder: Optimal entropy-constrained scalar quantization of a uniform source. IEEE Trans. Inform. Theory 46 (2000), 2704–2711. | MR
[12] A. György and T. Linder: On the structure of optimal entropy-constrained scalar quantizers. IEEE Trans. Inform. Theory 48 (2002), 416–427. | MR
[13] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities. Second edition. Cambridge University Press, Cambridge 1959.
[14] P. Harremoës and F. Topsøe: Inequalities between entropy and index of coincidence derived from information diagrams. IEEE Trans. Inform. Theory 47 (2001), 2944–2960. | MR
[15] M. Kesseböhmer and S. Zhu: Stability of quantization dimension and quantization for homogeneous Cantor measure. Math. Nachr. 280 (2007), 866–881. | MR
[16] W. Kreitmeier: Optimal quantization for dyadic homogeneous Cantor distributions. Math. Nachr. 281 (2008), 1307–1327. | MR
[17] F. Liese, D. Morales, and I. Vajda: Asymptotically sufficient partitions and quantizations. IEEE Trans. Inform. Theory 52 (2006), 5599–5606. | MR
[18] K. Pötzelberger and H. Strasser: Clustering and quantization by MSP-partitions. Statist. Decisions 19 (2001), 331–371. | MR