Keywords: Sugeno integral; fuzzy measure; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators
@article{KYB_2010_46_1_a5,
author = {Agahi, Hamzeh and Mesiar, Radko and Ouyang, Yao},
title = {Further development of {Chebyshev} type inequalities for {Sugeno} integrals and {T-(S-)evaluators}},
journal = {Kybernetika},
pages = {83--95},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666896},
zbl = {1188.28014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/}
}
TY - JOUR AU - Agahi, Hamzeh AU - Mesiar, Radko AU - Ouyang, Yao TI - Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators JO - Kybernetika PY - 2010 SP - 83 EP - 95 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/ LA - en ID - KYB_2010_46_1_a5 ER -
Agahi, Hamzeh; Mesiar, Radko; Ouyang, Yao. Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators. Kybernetika, Tome 46 (2010) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/
[1] H. Agahi and M. A. Yaghoobi: A Minkowski type inequality for fuzzy integrals. J. Uncertain Systems, in press.
[2] H. Agahi, R. Mesiar, and Y. Ouyang: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets and Systems 161 (2010), 708-715. | MR
[3] H. Agahi, R. Mesiar, and Y. Ouyang: New general extensions of Chebyshev type inequalities for Sugeno integrals. International Journal of Approximate Reasoning 51 (2009), 135-140. | MR
[4] P. Benvenuti, R. Mesiar, and D. Vivona: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol II, Elsevier, 2002, pp. 1329–1379. | MR
[5] S. Bodjanova and M. Kalina: T-evaluators and S-evaluators. Fuzzy Sets and Systems 160 (2009), 1965–1983. | MR
[6] A. Flores-Franulič and H. Román-Flores: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190 (2007), 1178–1184. | MR
[7] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge, 2009. | MR
[8] E. P. Klement, R. Mesiar, and E. Pap: Measure-based aggregation operators. Fuzzy Sets and Systems 142 (2004), 3–14. | MR
[9] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms, Trends in Logic. (Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dodrecht 2000. | MR
[10] R. Mesiar and A. Mesiarová: Fuzzy integrals and linearity. Internat. J. Approx. Reason. 47 (2008), 352–358. | MR
[11] R. Mesiar and Y. Ouyang: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets and Systems 160 (2009), 58–64. | MR
[12] Y. Ouyang and J. Fang: Sugeno integral of monotone functions based on Lebesgue measure. Comput. Math. Appl. 56 (2008), 367–374. | MR
[13] Y. Ouyang, J. Fang, and L. Wang: Fuzzy Chebyshev type inequality. Internat. J. Approx. Reason. 48 (2008), 829–835. | MR
[14] Y. Ouyang, R. Mesiar, and H. Agahi: An inequality related to Minkowski type for Sugeno integrals. Information Sciences, in press.
[15] Y. Ouyang and R. Mesiar: On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett. 22 (2009), 1810–1815. | MR
[16] Y. Ouyang and R. Mesiar: Sugeno integral and the comonotone commuting property. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 465–480. | MR
[17] Y. Ouyang, R. Mesiar, and J. Li: On the comonotonic-$\star $-property for Sugeno integral. Appl. Math. Comput. 211 (2009), 450–458. | MR
[18] E. Pap: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht 1995. | MR | Zbl
[19] D. Ralescu and G. Adams: The fuzzy integral. J. Math. Anal. Appl. 75 (1980), 562-570. | MR
[20] H. Román-Flores and Y. Chalco-Cano: H-continuity of fuzzy measures and set defuzzifincation. Fuzzy Sets and Systems 157(2006), 230–242. | MR
[21] H. Román-Flores and Y. Chalco-Cano: Sugeno integral and geometric inequalities. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 1–11. | MR
[22] H. Román-Flores, A. Flores-Franulič, and Y. Chalco-Cano: The fuzzy integral for monotone functions. Appl. Math. Comput. 185 (2007), 492–498. | MR
[23] H. Román-Flores, A. Flores-Franulič, and Y. Chalco-Cano: A Jensen type inequality for fuzzy integrals. Inform. Scie. 177 (2007), 3192–3201. | MR
[24] P. Struk: Extremal fuzzy integrals. Soft Computing 10 (2006), 502–505. | Zbl
[25] M. Sugeno: Theory of Fuzzy Integrals and its Applications. Ph.D. Thesis. Tokyo Institute of Technology, 1974.
[26] Z. Wang and G. Klir: Fuzzy Measure Theory. Plenum Press, New York 1992. | MR