Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
Kybernetika, Tome 46 (2010) no. 1, pp. 83-95 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function $H$ and a scale transformation $\varphi $ is given. Consequences for T-(S-)evaluators are established.
In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function $H$ and a scale transformation $\varphi $ is given. Consequences for T-(S-)evaluators are established.
Classification : 03E72, 06A99, 28E10
Keywords: Sugeno integral; fuzzy measure; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators
@article{KYB_2010_46_1_a5,
     author = {Agahi, Hamzeh and Mesiar, Radko and Ouyang, Yao},
     title = {Further development of {Chebyshev} type inequalities for {Sugeno} integrals and {T-(S-)evaluators}},
     journal = {Kybernetika},
     pages = {83--95},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2666896},
     zbl = {1188.28014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/}
}
TY  - JOUR
AU  - Agahi, Hamzeh
AU  - Mesiar, Radko
AU  - Ouyang, Yao
TI  - Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
JO  - Kybernetika
PY  - 2010
SP  - 83
EP  - 95
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/
LA  - en
ID  - KYB_2010_46_1_a5
ER  - 
%0 Journal Article
%A Agahi, Hamzeh
%A Mesiar, Radko
%A Ouyang, Yao
%T Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
%J Kybernetika
%D 2010
%P 83-95
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/
%G en
%F KYB_2010_46_1_a5
Agahi, Hamzeh; Mesiar, Radko; Ouyang, Yao. Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators. Kybernetika, Tome 46 (2010) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a5/

[1] H. Agahi and M. A. Yaghoobi: A Minkowski type inequality for fuzzy integrals. J. Uncertain Systems, in press.

[2] H. Agahi, R. Mesiar, and Y. Ouyang: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets and Systems 161 (2010), 708-715. | MR

[3] H. Agahi, R. Mesiar, and Y. Ouyang: New general extensions of Chebyshev type inequalities for Sugeno integrals. International Journal of Approximate Reasoning 51 (2009), 135-140. | MR

[4] P. Benvenuti, R. Mesiar, and D. Vivona: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol II, Elsevier, 2002, pp. 1329–1379. | MR

[5] S. Bodjanova and M. Kalina: T-evaluators and S-evaluators. Fuzzy Sets and Systems 160 (2009), 1965–1983. | MR

[6] A. Flores-Franulič and H. Román-Flores: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190 (2007), 1178–1184. | MR

[7] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge, 2009. | MR

[8] E. P. Klement, R. Mesiar, and E. Pap: Measure-based aggregation operators. Fuzzy Sets and Systems 142 (2004), 3–14. | MR

[9] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms, Trends in Logic. (Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dodrecht 2000. | MR

[10] R. Mesiar and A. Mesiarová: Fuzzy integrals and linearity. Internat. J. Approx. Reason. 47 (2008), 352–358. | MR

[11] R. Mesiar and Y. Ouyang: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets and Systems 160 (2009), 58–64. | MR

[12] Y. Ouyang and J. Fang: Sugeno integral of monotone functions based on Lebesgue measure. Comput. Math. Appl. 56 (2008), 367–374. | MR

[13] Y. Ouyang, J. Fang, and L. Wang: Fuzzy Chebyshev type inequality. Internat. J. Approx. Reason. 48 (2008), 829–835. | MR

[14] Y. Ouyang, R. Mesiar, and H. Agahi: An inequality related to Minkowski type for Sugeno integrals. Information Sciences, in press.

[15] Y. Ouyang and R. Mesiar: On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett. 22 (2009), 1810–1815. | MR

[16] Y. Ouyang and R. Mesiar: Sugeno integral and the comonotone commuting property. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 465–480. | MR

[17] Y. Ouyang, R. Mesiar, and J. Li: On the comonotonic-$\star $-property for Sugeno integral. Appl. Math. Comput. 211 (2009), 450–458. | MR

[18] E. Pap: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht 1995. | MR | Zbl

[19] D. Ralescu and G. Adams: The fuzzy integral. J. Math. Anal. Appl. 75 (1980), 562-570. | MR

[20] H. Román-Flores and Y. Chalco-Cano: H-continuity of fuzzy measures and set defuzzifincation. Fuzzy Sets and Systems 157(2006), 230–242. | MR

[21] H. Román-Flores and Y. Chalco-Cano: Sugeno integral and geometric inequalities. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 1–11. | MR

[22] H. Román-Flores, A. Flores-Franulič, and Y. Chalco-Cano: The fuzzy integral for monotone functions. Appl. Math. Comput. 185 (2007), 492–498. | MR

[23] H. Román-Flores, A. Flores-Franulič, and Y. Chalco-Cano: A Jensen type inequality for fuzzy integrals. Inform. Scie. 177 (2007), 3192–3201. | MR

[24] P. Struk: Extremal fuzzy integrals. Soft Computing 10 (2006), 502–505. | Zbl

[25] M. Sugeno: Theory of Fuzzy Integrals and its Applications. Ph.D. Thesis. Tokyo Institute of Technology, 1974.

[26] Z. Wang and G. Klir: Fuzzy Measure Theory. Plenum Press, New York 1992. | MR