Keywords: game theory; cooperative game; multi-alternative game; restricted game; Banzhaf value
@article{KYB_2010_46_1_a3,
author = {Masuya, Satoshi and Inuiguchi, Masahiro},
title = {A value based on marginal contributions for multi{\textendash}alternative games with restricted coalitions},
journal = {Kybernetika},
pages = {50--67},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666894},
zbl = {1187.91016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a3/}
}
TY - JOUR AU - Masuya, Satoshi AU - Inuiguchi, Masahiro TI - A value based on marginal contributions for multi–alternative games with restricted coalitions JO - Kybernetika PY - 2010 SP - 50 EP - 67 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a3/ LA - en ID - KYB_2010_46_1_a3 ER -
Masuya, Satoshi; Inuiguchi, Masahiro. A value based on marginal contributions for multi–alternative games with restricted coalitions. Kybernetika, Tome 46 (2010) no. 1, pp. 50-67. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a3/
[1] J. F. Banzhaf: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review 19 (1965), 317–343.
[2] J. M. Bilbao, E. Lebrón, and N. Jiménez: Probabilistic values on convex geometries. Ann. Oper. Res. 84 (1998), 79–95. | MR
[3] E. M. Bolger: Power indices for multicandidate voting games. Internat. J. Game Theory 15 (1986), 175–186. | MR | Zbl
[4] E. M. Bolger: A value for games with $n$ players and $r$ alternatives. Internat. J. Game Theory 22 (1993), 319–334. | MR | Zbl
[5] E. M. Bolger: A consistent value for games with $n$ players and $r$ alternatives. Internat. J. Game Theory 29 (2000), 93–99. | MR | Zbl
[6] E. Lehrer: An axiomatization of the Banzhaf value. Internat J. Game Theory 17 (1988), 89–99. | MR | Zbl
[7] R. B. Myerson: Graphs and cooperation in games. Math. Oper. Res. 2 (1977), 225–229. | MR | Zbl
[8] R. Ono: Values for multialternative games and multilinear extensions. In: Power Indices and Coalition Formation (M. Holler and G. Owen, eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 63–86.
[9] L. S. Shapley: A value for $n$-person games. In: Contributions to the Theory of Games II (H. Kuhn and A. Tucker, eds.), Princeton 1953, pp. 307–317. | MR | Zbl
[10] M. Tsurumi, M. Inuiguchi, and T. Tanino: A solution for fuzzy generalized multi-alternative games. In: The 2006 NOLTA Proc. 2006, pp. 95–98.