Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions
Kybernetika, Tome 46 (2010) no. 1, pp. 19-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions $V_n$ in a rational functional form approximating a maximal Lyapunov function $V_M$ that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions $V_n$ for a class of hybrid (piecewise non-linear) systems, where the dynamics is continuous on the boundary of the different regimes in the state space. In addition, a computationally feasible method is proposed to estimate the DOA using a maximal fitting hypersphere.
In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions $V_n$ in a rational functional form approximating a maximal Lyapunov function $V_M$ that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions $V_n$ for a class of hybrid (piecewise non-linear) systems, where the dynamics is continuous on the boundary of the different regimes in the state space. In addition, a computationally feasible method is proposed to estimate the DOA using a maximal fitting hypersphere.
Classification : 34A34, 34A38, 34D20, 34D23, 34D35, 37B25, 70K20, 93D20
Keywords: maximal Lyapunov functions; domain of attraction; hybrid systems
@article{KYB_2010_46_1_a1,
     author = {Rozgonyi, Szabolcs and Hangos, Katalin M. and Szederk\'enyi, G\'abor},
     title = {Determining the domain of attraction of hybrid non{\textendash}linear systems using maximal {Lyapunov} functions},
     journal = {Kybernetika},
     pages = {19--37},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2666892},
     zbl = {1194.34018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/}
}
TY  - JOUR
AU  - Rozgonyi, Szabolcs
AU  - Hangos, Katalin M.
AU  - Szederkényi, Gábor
TI  - Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions
JO  - Kybernetika
PY  - 2010
SP  - 19
EP  - 37
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/
LA  - en
ID  - KYB_2010_46_1_a1
ER  - 
%0 Journal Article
%A Rozgonyi, Szabolcs
%A Hangos, Katalin M.
%A Szederkényi, Gábor
%T Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions
%J Kybernetika
%D 2010
%P 19-37
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/
%G en
%F KYB_2010_46_1_a1
Rozgonyi, Szabolcs; Hangos, Katalin M.; Szederkényi, Gábor. Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions. Kybernetika, Tome 46 (2010) no. 1, pp. 19-37. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/

[1] St. Balint, E. Kaslik, A. M. Balint, and A. Grigis: Methods for determination and approximation of the domain of attraction in the case of autonomous discrete dynamical systems. Adv. Difference Equations 2006,doi:10.1155/ADE/2006/23939. | MR

[2] N. P. Bhatia and G. P. Szegő: Stability Theory of Dynamical Systems. Springer-Verlag, Berlin 1970. | MR

[3] M. S. Branicky: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 43 (1998), 475–482. | MR | Zbl

[4] G. Chesi: Estimating the domain of attraction for uncertain polynomial systems. Automatica 40 (2004), 11, 1981–1986. | MR | Zbl

[5] C. Chesi: Domain of attraction: estimates for non-polynomial systems via LMIs. In: Proc. 16th IFAC World Congress on Automatic Control 2005.

[6] C. Chesi: Estimating the domain of attraction via union of continuous families of Lyapunov estimates. Systems Control Lett. 56 (2007), 4, 326–333. | MR | Zbl

[7] G. Chesi, A. Garulli, A. Tesi, and A. Vicino: Solving quadratic distance problems: an LMI-based approach. IEEE Trans. Automat. Control 48 (2003), 2, 200–212. | MR

[8] E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGill-Hill Book Company, New York – Toronto – London 1955. | MR

[9] L. T. Grujić, J.-P. Richard, P. Borne, and J.-C. Gentina: Stability Domains. CRC Press, Boca Raton, London, New York, Washington D.C., 2003.

[10] O. Hachicho and B. Tibken: Estimating domains of attraction of a class of nonlinear dynamical systems with LMI methods based on the theory of moments. In: Proc. 41st IEEE Conference on Decision and Control 2002.

[11] W. Hahn: Stability of Motion. Springer-Verlag, New York 1967. | MR | Zbl

[12] E. Kaslik, A. M. Balint, and St. Balint: Methods for Determination and Approximation of the Domain of Attraction. Research Report 2004.

[13] H. W. Knobloch and F. Kappel: Gewöhnlich Differentialgleichungen. Teubner Verlag, Stuttgart 1974. | MR

[14] J. P. LaSalle: The Stability of Dynamical Systems. SIAM, Philadelphia 1976. | MR | Zbl

[15] J. P. LaSalle and S. Lefschetz: Stability by Lyapunov’s Direct Method with Applications. Academic Press, New York 1961. | MR

[16] S.-H. Lee and J.-T. Lim: Stability Analysis of Switched Systems with Impulse Effects. Research Report, Korea Advanced Institute of Science and Technology 1999.

[17] Z. G. Li, C. Y. Wen, and and Y. C. Soh: A unified approach for stability analysis of impulsive hybrid systems. In: Proc. 38th IEEE Conference on Decision and Control 1999.

[18] D. Liberzon: Switching in Systems and Control. Birkhäuser, Boston 2003. | MR | Zbl

[19] M. Malisoff and F. Mazenc: Constructions of Strict Lyapunov Functions for Discrete Time and Hybrid Time-Varying Systems. Research Report 2007. | MR

[20] S. Pettersson and B. Lennartson: LMI for Stability and Robustness of Hybrid Systems. Research Report I-96/005, Chalmers University of Technology, 1996.

[21] S. Pettersson and B. Lennartson: Exponential Stability Of Hybrid Systems Using Piecewise Quadratic Lyapunov Functions Resulting In LMIs. Research Report, Chalmers University of Technology 1999.

[22] Sz. Rozgonyi, K. M. Hangos, and G. Szederkényi: Improved Estimation Method of Region of Stability for Nonlinear Autonomous Systems. Research Report, Systems and Control Laboratory, Computer and Automation Research Institute 2006.

[23] H. Schumacher and A. van der Schaft: An Introduction to Hybrid Dynamical Systems. Springer-Verlag, Berlin 1999. | MR

[24] B. van der Pol: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1 (1920), 701–710.

[25] A. Vanelli and M. Vidyasagar: Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21 (1985), 69–80. | MR

[26] J. Vigo-Aguiar, J. Martin-Vaquero, and H. Ramos: Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Comm. 178 (2008), 15–34. | MR

[27] D. Wu and Z. Wang: A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Comput. Phys. Comm. 174 (2006), 447–463.

[28] T. Yoshizawa: Stability theory by Lyapunov’s second method. Math. Soc. Japan 9 (1966), 223. | MR

[29] M. Zefran and J. W. Burdick: Stabilization of systems with changing dynamics. In: HSCC 1998, pp. 400–415.

[30] V. I. Zubov: Methods of A. M. Lyapunov and Their Application. Noordhoff 1964. | MR | Zbl