Keywords: maximal Lyapunov functions; domain of attraction; hybrid systems
@article{KYB_2010_46_1_a1,
author = {Rozgonyi, Szabolcs and Hangos, Katalin M. and Szederk\'enyi, G\'abor},
title = {Determining the domain of attraction of hybrid non{\textendash}linear systems using maximal {Lyapunov} functions},
journal = {Kybernetika},
pages = {19--37},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666892},
zbl = {1194.34018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/}
}
TY - JOUR AU - Rozgonyi, Szabolcs AU - Hangos, Katalin M. AU - Szederkényi, Gábor TI - Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions JO - Kybernetika PY - 2010 SP - 19 EP - 37 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/ LA - en ID - KYB_2010_46_1_a1 ER -
%0 Journal Article %A Rozgonyi, Szabolcs %A Hangos, Katalin M. %A Szederkényi, Gábor %T Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions %J Kybernetika %D 2010 %P 19-37 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/ %G en %F KYB_2010_46_1_a1
Rozgonyi, Szabolcs; Hangos, Katalin M.; Szederkényi, Gábor. Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions. Kybernetika, Tome 46 (2010) no. 1, pp. 19-37. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a1/
[1] St. Balint, E. Kaslik, A. M. Balint, and A. Grigis: Methods for determination and approximation of the domain of attraction in the case of autonomous discrete dynamical systems. Adv. Difference Equations 2006,doi:10.1155/ADE/2006/23939. | MR
[2] N. P. Bhatia and G. P. Szegő: Stability Theory of Dynamical Systems. Springer-Verlag, Berlin 1970. | MR
[3] M. S. Branicky: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 43 (1998), 475–482. | MR | Zbl
[4] G. Chesi: Estimating the domain of attraction for uncertain polynomial systems. Automatica 40 (2004), 11, 1981–1986. | MR | Zbl
[5] C. Chesi: Domain of attraction: estimates for non-polynomial systems via LMIs. In: Proc. 16th IFAC World Congress on Automatic Control 2005.
[6] C. Chesi: Estimating the domain of attraction via union of continuous families of Lyapunov estimates. Systems Control Lett. 56 (2007), 4, 326–333. | MR | Zbl
[7] G. Chesi, A. Garulli, A. Tesi, and A. Vicino: Solving quadratic distance problems: an LMI-based approach. IEEE Trans. Automat. Control 48 (2003), 2, 200–212. | MR
[8] E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGill-Hill Book Company, New York – Toronto – London 1955. | MR
[9] L. T. Grujić, J.-P. Richard, P. Borne, and J.-C. Gentina: Stability Domains. CRC Press, Boca Raton, London, New York, Washington D.C., 2003.
[10] O. Hachicho and B. Tibken: Estimating domains of attraction of a class of nonlinear dynamical systems with LMI methods based on the theory of moments. In: Proc. 41st IEEE Conference on Decision and Control 2002.
[11] W. Hahn: Stability of Motion. Springer-Verlag, New York 1967. | MR | Zbl
[12] E. Kaslik, A. M. Balint, and St. Balint: Methods for Determination and Approximation of the Domain of Attraction. Research Report 2004.
[13] H. W. Knobloch and F. Kappel: Gewöhnlich Differentialgleichungen. Teubner Verlag, Stuttgart 1974. | MR
[14] J. P. LaSalle: The Stability of Dynamical Systems. SIAM, Philadelphia 1976. | MR | Zbl
[15] J. P. LaSalle and S. Lefschetz: Stability by Lyapunov’s Direct Method with Applications. Academic Press, New York 1961. | MR
[16] S.-H. Lee and J.-T. Lim: Stability Analysis of Switched Systems with Impulse Effects. Research Report, Korea Advanced Institute of Science and Technology 1999.
[17] Z. G. Li, C. Y. Wen, and and Y. C. Soh: A unified approach for stability analysis of impulsive hybrid systems. In: Proc. 38th IEEE Conference on Decision and Control 1999.
[18] D. Liberzon: Switching in Systems and Control. Birkhäuser, Boston 2003. | MR | Zbl
[19] M. Malisoff and F. Mazenc: Constructions of Strict Lyapunov Functions for Discrete Time and Hybrid Time-Varying Systems. Research Report 2007. | MR
[20] S. Pettersson and B. Lennartson: LMI for Stability and Robustness of Hybrid Systems. Research Report I-96/005, Chalmers University of Technology, 1996.
[21] S. Pettersson and B. Lennartson: Exponential Stability Of Hybrid Systems Using Piecewise Quadratic Lyapunov Functions Resulting In LMIs. Research Report, Chalmers University of Technology 1999.
[22] Sz. Rozgonyi, K. M. Hangos, and G. Szederkényi: Improved Estimation Method of Region of Stability for Nonlinear Autonomous Systems. Research Report, Systems and Control Laboratory, Computer and Automation Research Institute 2006.
[23] H. Schumacher and A. van der Schaft: An Introduction to Hybrid Dynamical Systems. Springer-Verlag, Berlin 1999. | MR
[24] B. van der Pol: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1 (1920), 701–710.
[25] A. Vanelli and M. Vidyasagar: Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21 (1985), 69–80. | MR
[26] J. Vigo-Aguiar, J. Martin-Vaquero, and H. Ramos: Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Comm. 178 (2008), 15–34. | MR
[27] D. Wu and Z. Wang: A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Comput. Phys. Comm. 174 (2006), 447–463.
[28] T. Yoshizawa: Stability theory by Lyapunov’s second method. Math. Soc. Japan 9 (1966), 223. | MR
[29] M. Zefran and J. W. Burdick: Stabilization of systems with changing dynamics. In: HSCC 1998, pp. 400–415.
[30] V. I. Zubov: Methods of A. M. Lyapunov and Their Application. Noordhoff 1964. | MR | Zbl