Keywords: nonlinear system; observer; chaos shift keying; generalized Lorenz system; synchronization; anti-synchronization; secure communication
@article{KYB_2010_46_1_a0,
author = {Lynnyk, Volodymyr and \v{C}elikovsk\'y, Sergej},
title = {On the anti{\textendash}synchronization detection for the generalized {Lorenz} system and its applications to secure encryption},
journal = {Kybernetika},
pages = {1--18},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2666891},
zbl = {1190.93038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a0/}
}
TY - JOUR AU - Lynnyk, Volodymyr AU - Čelikovský, Sergej TI - On the anti–synchronization detection for the generalized Lorenz system and its applications to secure encryption JO - Kybernetika PY - 2010 SP - 1 EP - 18 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a0/ LA - en ID - KYB_2010_46_1_a0 ER -
Lynnyk, Volodymyr; Čelikovský, Sergej. On the anti–synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika, Tome 46 (2010) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/KYB_2010_46_1_a0/
[1] J. Alvarez, H. Puebla, and I. Cervantes: Stability of observer-based chaotic communication for a class of Lur’e systems. Internat. J. Bifurcation Chaos 7 (2002), 1605–1618.
[2] G. Alvarez and S. Li: Cryptographic requirements for chaotic secure communications. arXiv: nlin. CD/0311039, 2003.
[3] T. L. Carroll and L. M. Pecora: Cascading synchronized chaotic systems. Physica D 67 (1993), 126–140.
[4] S. Čelikovský: Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization. Kybernetika 40 (2004), 6, 649–664. | MR
[5] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifurcation Chaos 12 (2002), 1789–1812. | MR
[6] S. Čelikovský and G. Chen: Secure synchronization of chaotic systems from a nonlinear observer approach. IEEE Trans. Automat. Control 50 (2005), 76–82. | MR
[7] S. Čelikovský, V. Lynnyk, and M. Šebek: Anti-synchronization chaos shift keying method based on generalized Lorenz system. In: Proc. The 1st IFAC Conference on Analysis and Control of Chaotic Systems. CHAOS’06, 2006, pp. 333–338.
[8] S. Čelikovský, V. Lynnyk, and M. Šebek: Observer-based chaos sychronization in the generalized chaotic Lorenz systems and its application to secure encryption. In: Proc. The 45th IEEE Conference on Decision and Control, 2006, pp. 3783–3788.
[9] S. Čelikovský and V. Lynnyk: Anti-synchronization chaos shift keying method: Error derivative detection improvement. In: Proc. The 2st IFAC Conference on Analysis and Control of Chaotic Systems. CHAOS ’09, pp. 1-6.
[10] S. Čelikovský and A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424.
[11] K. M. Cuomo and A. V. Oppenheim: Circuit implementation of synchronized chaos with application to communications. Physical Rev. Lett. 71 (1993),1, 65–68.
[12] K. Cuomo, A. Oppenheim, and S. Strogatz: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits and Systems II 40 (1993), 626–633.
[13] F. Dachselt and W. Schwartz: Chaos and cryptography. IEEE Trans. Circuits and Systems I 48 (2001), 1498–1509. | MR
[14] H. Dedieu, M. P. Kennedy, and M. Hasler: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuit. IEEE Trans. Circuits and Systems II 40 (1993), 634–642.
[15] L. Gamez-Guzman, R. M. Cruz-Hernandez, Lopez-Gutierrez, and E. E. Garcia-Guerrero: Synchronization of Chua’s circuits with multi-scroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation 14 (2009), 6, 2765–2775.
[16] J. M. V. Grzybowski, M. Rafikov, and J. M. Balthazar: Synchronization of the unified chaotic system and application in secure communication. Communications in Nonlinear Science and Numerical Simulation 14 (2009), 6, 2793–2806. | MR
[17] L. Kocarev and U. Parlitz: General approach for chaotic synchronization with applications to communications. Phys. Rev. Lett. 74 (1995), 25, 5028–5031.
[18] L. Kocarev: Chaos-based cryptography: a brief overview. Circuits Systems Magazine 1 (2001), 6–21.
[19] A. A. Koronovskii, O. I. Moskalenko, P. V. Popov, and A. E. Hramov: Method for secure data transmission based on generalized synchronization. BRAS: Physics. 72 (2008), 1, 131–135.
[20] K. Lian and P. Liu: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits Systems I 47 (2000), 1418–1424. | MR
[21] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel: Encoding messages using chaotic synchronization. Phys. Rev. E. 53 (1996), 4351–4361.
[22] U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang: Transmission of digital signals by chaotic synchronization. Internat. J. Bifur. Chaos 2 (1992), 973–977.
[23] R. Schmitz: Use of chaotic dynamical systems in cryptography. J. Franklin Inst. 338 (2001), 4, 429–441. | MR | Zbl
[24] A. Vaněček and S. Čelikovský: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. | MR
[25] A. R. Volkovskii and N. Rulkov: Synchronouns chaotic response of a nonlinear oscillating system as a principle for the detection of the information component of chaos. Tech. Phys. Lett. 19 (1993), 97–99.