Keywords: copulas; exchangeability; positive regression dependence
@article{KYB_2009_45_6_a8,
author = {Durante, Fabrizio and Papini, Pier Luigi},
title = {Componentwise concave copulas and their asymmetry},
journal = {Kybernetika},
pages = {1003--1011},
year = {2009},
volume = {45},
number = {6},
mrnumber = {2650079},
zbl = {1191.62095},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a8/}
}
Durante, Fabrizio; Papini, Pier Luigi. Componentwise concave copulas and their asymmetry. Kybernetika, Tome 45 (2009) no. 6, pp. 1003-1011. http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a8/
[1] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions. Triangular Norms and Copulas. World Scientific, Hackensack, NJ 2006. | MR
[2] E. Alvoni, F. Durante, P.-L. Papini, and C. Sempi: Different types of convexity and concavity for copulas. In: New Dimensions in Fuzzy Logic and related Technologies – Proc. 5th EUSFLAT Conference (M. Štěpnička, V. Novák, and U. Bodenhofer, eds.), Volume 1, University of Ostrava 2007, pp. 185–189.
[3] E. Alvoni and P. L. Papini: Quasi-concave copulas, asymmetry and transformations. Comment. Math. Univ. Carolin. 48 (2007), 311–319. | MR
[4] E. Alvoni, P.-L. Papini, and F. Spizzichino: On a class of transformations of copulas and quasi-copulas. Fuzzy Sets and Systems 160 (2009), 334–343. | MR
[5] P. Capérà and C. Genest: Spearman’s $\rho $ is larger than Kendall’s $\tau $ for positively dependent random variables. J. Nonparametr. Statist. 2 (1993), 183–194. | MR
[6] B. De Baets, H. De Meyer, and R. Mesiar: Asymmetric semilinear copulas. Kybernetika 43 (2007), 221–233. | MR
[7] F. Durante, E. P. Klement, C. Sempi, and M. Úbeda-Flores: Measures of non-exchangeability for bivariate random vectors. Statist. Papers (2009), to appear (doi:10.1007/s00362-008-0153-0). | MR
[8] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Copulas with given values on a horizontal and a vertical section. Kybernetika 43 (2007), 209–220. | MR
[9] F. Durante, R. Mesiar, P.-L. Papini, and C. Sempi: 2-increasing binary aggregation operators. Inform. Sci. 177 (2007), 111–129. | MR
[10] F. Durante and P.-L. Papini: A weakening of Schur-concavity for copulas. Fuzzy Sets and Systems 158 (2007), 1378–1383. | MR
[11] F. Durante and P.-L. Papini: Non-exchangeability of negatively dependent random variables. Metrika (2009), to appear (doi:10.1007/s00184-008-0207-2). | MR
[12] F. Durante, S. Saminger-Platz, and P. Sarkoci: Rectangular patchwork for bivariate copulas and tail dependence. Comm. Statist. Theory Methods 38 (2009), 2515–2527. | MR
[13] F. Durante and C. Sempi: Copulæ and Schur-concavity. Internat. Math. J. 3 (2003), 893–905. | MR
[14] F. Durante and C. Sempi: Copula and semicopula transforms. Internat. J. Math. Math. Sci. 2005 (2005), 645–655. | MR
[15] F. Durante and C. Sempi: On the characterization of a class of binary operations on bivariate distribution functions. Publ. Math. Debrecen 69 (2006), 47–63. | MR
[16] H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | MR | Zbl
[17] E. P. Klement and A. Kolesárová: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section. Monatsh. Math. 152 (2007), 151–167. | MR
[18] E. P. Klement, A. Kolesárová, R. Mesiar, and A. Stupňanová: Lipschitz continuity of discrete universal integrals based on copulas. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems (to appear). | MR
[19] E. P. Klement and R. Mesiar: How non-symmetric can a copula be? Comment. Math. Univ. Carolin. 47 (2006), 141–148. | MR
[20] E. P. Klement, R. Mesiar, and E. Pap: Transformations of copulas. Kybernetika 41 (2005), 425–434. | MR
[21] M. Marinacci and L. Montrucchio: Ultramodular functions. Math. Oper. Res. 30 (2005), 311–332. | MR
[22] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, New York 1979. | MR
[23] A. J. Mc Neil and J. Nešlehová: Multivariate Archimedean copulas, d-monotone functions and $\ell _1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059–3097. | MR
[24] A. J. McNeil, R. Frey, and P. Embrechts: Quantitative Risk Management. Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ 2005. | MR
[25] P. M. Morillas: A method to obtain new copulas from a given one. Metrika 61 (2005), 169–184. | MR | Zbl
[26] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006. | MR | Zbl
[27] R. B. Nelsen: Extremes of nonexchangeability. Statist. Papers 48 (2007), 329–336. | MR | Zbl
[28] G. Salvadori, C. De Michele, N. T. Kottegoda, and R. Rosso: Extremes in Nature. An Approach Using Copulas. Springer, Dordrecht 2007.
[29] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. Dover Publications, Mineola, N.Y. 2006.
[30] A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. | MR
[31] A. Sklar: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460. | MR