Keywords: random closed set; convex ring; curvature measure; intrinsic volume
@article{KYB_2009_45_6_a3,
author = {Mrkvi\v{c}ka, Tom\'a\v{s} and Rataj, Jan},
title = {On estimation of intrinsic volume densities of stationary random closed sets via parallel sets in the plane},
journal = {Kybernetika},
pages = {931--945},
year = {2009},
volume = {45},
number = {6},
mrnumber = {2650074},
zbl = {1186.62050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a3/}
}
TY - JOUR AU - Mrkvička, Tomáš AU - Rataj, Jan TI - On estimation of intrinsic volume densities of stationary random closed sets via parallel sets in the plane JO - Kybernetika PY - 2009 SP - 931 EP - 945 VL - 45 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a3/ LA - en ID - KYB_2009_45_6_a3 ER -
Mrkvička, Tomáš; Rataj, Jan. On estimation of intrinsic volume densities of stationary random closed sets via parallel sets in the plane. Kybernetika, Tome 45 (2009) no. 6, pp. 931-945. http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a3/
[1] R. Klette, A. Rosenfeld: Digital Geometry. Elsevier, New York 2004. | MR | Zbl
[2] T. Mrkvička, J. Rataj: On estimation of intrinsic volume densities of stationary random closed sets. Stoch. Proc. Appl. 118 (2008), 2, 213–231. | DOI | MR
[3] T. Mrkvička: Estimation of intrinsic volume via parallel sets in plane and space. Inzynieria Materialowa 4 (2008), 392–395.
[4] X.-X. Nguyen, H. Zessin: Ergodic theorems for spatial processes. Z. Wahrsch. Verw. Gebiete 48 (1979), 133–158 | DOI | MR | Zbl
[5] J. Ohser, F. Mücklich: Statistical Analysis of Microstructures in Materials Science. Wiley, Chichester 2000.
[6] J. Rataj: Estimation of intrinsic volumes from parallel neighbourhoods. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 77 (2006), 553–563. | MR | Zbl
[7] V. Schmidt, E. Spodarev: Joint estimators for the specific intrinsic volumes of stationary random sets. Stoch. Proc. Appl. 115 (2005), 959–981. | DOI | MR | Zbl
[8] R. Schneider, W. Weil: Stochastische Geometrie. Teubner, Stuttgart 2000. | MR | Zbl