Keywords: non-classical logics; D-posets; effect algebras; MV-algebras; atomicity
@article{KYB_2009_45_6_a11,
author = {Paseka, Jan and Rie\v{c}anov\'a, Zdenka},
title = {Atomicity of lattice effect algebras and their sub-lattice effect algebras},
journal = {Kybernetika},
pages = {1040--1051},
year = {2009},
volume = {45},
number = {6},
mrnumber = {2650082},
zbl = {1252.06007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a11/}
}
Paseka, Jan; Riečanová, Zdenka. Atomicity of lattice effect algebras and their sub-lattice effect algebras. Kybernetika, Tome 45 (2009) no. 6, pp. 1040-1051. http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a11/
[1] E. G. Beltrametti and G. Cassinelli: The Logic of Quantum Mechanics. Addison-Wesley, Reading, MA 1981. | MR
[2] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | MR | Zbl
[3] F. Chovanec and F. Kôpka: Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583. | MR
[4] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[5] R. J. Greechie, D. J. Foulis, and S. Pulmannová: The center of an effect algebra. Order 12 (1995), 91–106. | MR
[6] S. P. Gudder: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl
[7] S. P. Gudder: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923. | MR | Zbl
[8] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[9] G. Jenča and S. Pulmannová: Orthocomplete effect algebras. Proc. Amer. Math. Soc. 131 (2003), 2663–2671. | MR
[10] G. Kalmbach: Orthomodular Lattices. Kluwer Academic Publishers, Dordrecht 1998. | Zbl
[11] M. Katětov: Remarks on Boolean algebras. Colloq. Math. 11 (1951), 229–235. | MR
[12] F. Kôpka: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531. | MR
[13] K. Mosná: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/S, 3–6.
[14] V. Olejček: An atomic MV-effect algebra with non-atomic center. Kybernetika 43 (2007), 343–346. | MR
[15] J. Paseka and Z. Riečanová: Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528. | MR
[16] J. Paseka and Z. Riečanová: Compactly generated de Morgan lattices, basic algebras and effect algebras. Internat. J. Theoret. Phys. (2009), doi:10.1007/s10773-009-0011-4. | MR
[17] S. Pulmannová and Z. Riečanová: Block-finite atomic orthomodular lattices. J. Pure Appl. Algebra 89 (1993), 295–304.
[18] Z. Riečanová: Lattices and quantum logics with separated intervals, atomicity. Internat. J. Theoret. Phys. 37 (1998), 191–197. | MR
[19] Z. Riečanová: Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158. | MR
[20] Z. Riečanová: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38(1999), 3209–3220. | MR
[21] Z. Riečanová: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452. | MR
[22] Z. Riečanová: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theoret. Phys. 39 (2000), 231–237. | MR
[23] Z. Riečanová: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532. | MR
[24] Z. Riečanová: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524. | MR
[25] Z. Riečanová: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259. | MR
[26] Z. Riečanová: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sests and Systems 136 (2003), 41–54. | MR
[27] Z. Riečanová: Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423. | MR
[28] Z. Riečanová: Modular atomic effect algebras and the existence of subadditive states. Kybernetika 40 (2004), 459–468. | MR
[29] Z. Riečanová: Basic decomposition of elements and Jauch–Piron effect algebras. Fuzzy Sets and Systems 155 (2005), 138–149. | MR
[30] Z. Riečanová: Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 143–150. | MR
[31] Z. Riečanová and Wu Junde: States on sharply dominating effect algebras. Sci. China Ser. A: Mathematics 51 (2008), 907–914. | MR
[32] Z. Riečanová: Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009), 529–534. | MR
[33] Z. Riečanová and J. Paseka: State smearing theorems and the existence of states on some atomic lattice effect algebras. J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.
[34] T. A. Sarymsakov, S. A. Ajupov, Z. Chadzhijev, and V. J. Chilin: Ordered Algebras. (in Russian) FAN, Tashkent, 1983. | MR
[35] J. Schmidt: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. Math. 7 (1956), 241–249. | MR