Congruences and ideals in lattice effect algebras as basic algebras
Kybernetika, Tome 45 (2009) no. 6, pp. 1030-1039 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.
Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.
Classification : 03G12, 06C15, 08A55, 81P10
Keywords: basic algebra; effect algebra; ideal; congruence
@article{KYB_2009_45_6_a10,
     author = {Pulmannov\'a, Silvia and Vincekov\'a, Elena},
     title = {Congruences and ideals in lattice effect algebras as basic algebras},
     journal = {Kybernetika},
     pages = {1030--1039},
     year = {2009},
     volume = {45},
     number = {6},
     mrnumber = {2650081},
     zbl = {1200.62055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a10/}
}
TY  - JOUR
AU  - Pulmannová, Silvia
AU  - Vinceková, Elena
TI  - Congruences and ideals in lattice effect algebras as basic algebras
JO  - Kybernetika
PY  - 2009
SP  - 1030
EP  - 1039
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a10/
LA  - en
ID  - KYB_2009_45_6_a10
ER  - 
%0 Journal Article
%A Pulmannová, Silvia
%A Vinceková, Elena
%T Congruences and ideals in lattice effect algebras as basic algebras
%J Kybernetika
%D 2009
%P 1030-1039
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a10/
%G en
%F KYB_2009_45_6_a10
Pulmannová, Silvia; Vinceková, Elena. Congruences and ideals in lattice effect algebras as basic algebras. Kybernetika, Tome 45 (2009) no. 6, pp. 1030-1039. http://geodesic.mathdoc.fr/item/KYB_2009_45_6_a10/

[1] A. Avallone and P. Vitolo: Congruences and ideals of effect algebras. Order 20 (2003), 67–77. | MR

[2] I. Chajda, R. Halaš, and J. Kühr: Many valued quantum algebras. Alg. Univ. 60 (2009), 63–90. | MR

[3] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | MR | Zbl

[4] F. Chovanec and F. Kôpka: Boolean D-posets. Tatra Mt. Math. Publ. 10 (1997), 1–15. | MR

[5] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. | MR

[6] D. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352. | MR

[7] R. Giuntini: Quantum MV-algebras. Studia Logica 56 (1996), 303–417. | MR | Zbl

[8] S. Gudder: Total extensions of effect algebras. Found. Phys. Lett. 8 (1995), 243–252. | MR

[9] G. Jenča and S. Pulmannová: Ideals and quotients in lattice ordered effect albebras. Soft Computing 5 (2001), 376–380.

[10] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34. | MR