Keywords: time-delay systems; neutral system; stability
@article{KYB_2009_45_5_a9,
author = {Rodr{\'\i}guez, Salvador A. and Dugard, Luc and Dion, Jean-Michel and Le\'on, Jes\'us de},
title = {On delay-dependent robust stability under model transformation of some neutral systems},
journal = {Kybernetika},
pages = {825--840},
year = {2009},
volume = {45},
number = {5},
mrnumber = {2599115},
zbl = {1190.93079},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a9/}
}
TY - JOUR AU - Rodríguez, Salvador A. AU - Dugard, Luc AU - Dion, Jean-Michel AU - León, Jesús de TI - On delay-dependent robust stability under model transformation of some neutral systems JO - Kybernetika PY - 2009 SP - 825 EP - 840 VL - 45 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a9/ LA - en ID - KYB_2009_45_5_a9 ER -
%0 Journal Article %A Rodríguez, Salvador A. %A Dugard, Luc %A Dion, Jean-Michel %A León, Jesús de %T On delay-dependent robust stability under model transformation of some neutral systems %J Kybernetika %D 2009 %P 825-840 %V 45 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a9/ %G en %F KYB_2009_45_5_a9
Rodríguez, Salvador A.; Dugard, Luc; Dion, Jean-Michel; León, Jesús de. On delay-dependent robust stability under model transformation of some neutral systems. Kybernetika, Tome 45 (2009) no. 5, pp. 825-840. http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a9/
[1] C. Abdallah, M. Ariola, and V. Koltchinskii: Statistical-learning control of multiple-delay systems with applications to ATM Networks. Kybernetika 37 (2001), 355–365. | MR
[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, Philadelphia 1994. | MR
[3] J. Chen: On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40 (1995), 1087–1093. | MR | Zbl
[4] M. A. Cruz and J. K. Hale: Stability of functional differential equations of neutral type. J. Differential Equations 7 (1970), 334–355. | MR
[5] L. E. El’sgol’ts and S. B. Norkin: Introduction to the Theory and Applications of Differential Equations with Derivating Arguments (translated from Russian). (Mathematics in Science and Engineering, Vol. 105.) Academic Press, New York 1973. | MR
[6] M. Fliess and H. Mounier: On a class of linear delay systems often arising in practice. Kybernetika 37 (2001), 295–308. | MR
[7] E. Fridman: Descriptor discretized Lyapunov functional method: analysis and design. IEEE Trans. Automat. Control 51 (2006), 890–897. | MR
[8] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics (Mathematics and Its Applications Series 74). Kluwer Academic Publishers, Dordrecht 1992. | MR
[9] K. Gu and S. Niculescu: Additional dynamics in transformed time-delay systems. Proc. IEEE Trans. Automat. Control 45 (2000), 572–575. | MR
[10] J. K. Hale and M. A. Cruz: Existence, uniqueness and continuous dependence for hereditary systems. Ann. Mat. Pura Appl. 85 (1970), 63–82. | MR
[11] J. K. Hale and S. M. Verduyn Lunel: Introduction to Functional Differential Equations. Springer–Verlag, Berlin 1993. | MR
[12] J. K. Hale and M. A. Cruz: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5–23. | MR
[13] D. Ivanescu, S. Niculescu, L. Dugard, J. M. Dion, and E. I. Verriest: On delay dependent stability for linear neutral systems. Automatica 39 (2003), 255–261. | MR
[14] V. L. Kharitonov: Robust stability analysis of time-delay systems: a survey. In: IFAC Conference System Structure and Control, Nantes 1998, pp. 1–12.
[15] V. B. Kolmanovskii and A. D. Myshkis: Introduction to The Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. | MR
[16] V. B. Kolmanovskii and V. R. Nosov: On the stability of first order nonlinear equations of neutral type. Prikl. Mat. Mekh. 34 (1970), 587–594. | MR
[17] V. B. Kolmanovskii and J. P. Richard: Stability of some systems with distributed delays. JESA, Special Issue on Analysis and Control of Time-delay Systems 31 (1997), 13–18.
[18] V. B. Kolmanovskii and J. P. Richard: Stability of some linear systems with delays. IEEE Trans. Automat. Control 44 (1999), 984–989. | MR
[19] Y. Kuang: Delay-Differential Equation with Applications in Population Dynamics. Academic Press, New York 1993.
[20] H. Li, S.-M. Zhong, and H. B. Li: Some new simple stability criteria of linear neutral systems with a single delay. J. Comput. Appl. Math. 200 (2007), 441–447. | MR
[21] C.-H. Lien: Asymptotic criterion for neutral systems with multiple time delays. IEE Elec. Lett. 35 (1999), 850–851.
[22] S. I. Niculescu and B. Brogliato: Force measurement time-delays and contact instability phenomenon. European J. Control 5 (1999), 279–289.
[23] S. I. Niculescu: On delay-dependent stability under model transformations of some neutral linear systems. Internat. J. Control 74 (2001), 609–617. | MR | Zbl
[24] S. I. Niculescu: On robust stability of neutral systems. Kybernetika 37 (2001), 253–263. | MR
[25] S. I. Niculescu, E. I.Verriest, L. Dugard, and J.-M. Dion: Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 1–71. | MR
[26] P. Ngoc and B. Lee: Some sufficient conditions for exponential stability of linear neutral functional differential equations. Appl. Math. Comput. 170 (2005), 515–530. | MR
[27] J. P. Richard: Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 1667–1694. | MR | Zbl
[28] S. A. Rodriguez, J. M. Dion and L. Dugard: Robust stability analysis of neutral systems under model transformation. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1850–1855.
[29] S.A. Rodriguez, J.M. Dion and L. Dugard: Stability of neutral time delay systems: A survey of some results. In: Advances in Automatic Control (Mihail Voicu ed.), Kluwer Academic Publishers, Boston 2003, pp. 315–336. | MR
[30] S. A. Rodriguez, J. M. Dion, and L. Dugard: Robust delay-dependent stability analysis of neutral systems. In: Advances in Time-Delay Systems Vol. 38 (S. Niculescu and K. Gu, eds.), Springer–Verlag, Berlin 2004, pp. 269–284. | MR
[31] E. I. Verriest and S. I. Niculescu: Delay-independent stability of LNS: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 92–100. | MR