Keywords: discounted cost; random rate; stochastic systems; approximation algorithms; density estimation
@article{KYB_2009_45_5_a3,
author = {Gonz\'alez-Hern\'andez, Juan and L\'opez-Mart{\'\i}nez, Raquiel R. and Minj\'arez-Sosa, J. Adolfo},
title = {Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion},
journal = {Kybernetika},
pages = {737--754},
year = {2009},
volume = {45},
number = {5},
mrnumber = {2599109},
zbl = {1190.93105},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a3/}
}
TY - JOUR AU - González-Hernández, Juan AU - López-Martínez, Raquiel R. AU - Minjárez-Sosa, J. Adolfo TI - Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion JO - Kybernetika PY - 2009 SP - 737 EP - 754 VL - 45 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a3/ LA - en ID - KYB_2009_45_5_a3 ER -
%0 Journal Article %A González-Hernández, Juan %A López-Martínez, Raquiel R. %A Minjárez-Sosa, J. Adolfo %T Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion %J Kybernetika %D 2009 %P 737-754 %V 45 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a3/ %G en %F KYB_2009_45_5_a3
González-Hernández, Juan; López-Martínez, Raquiel R.; Minjárez-Sosa, J. Adolfo. Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika, Tome 45 (2009) no. 5, pp. 737-754. http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a3/
[1] H. Berument, Z. Kilinc, and U. Ozlale: The effects of different inflation risk premiums on interest rate spreads. Physica A 333 (2004), 317–324. | MR
[2] L. Devroye and L. Györfi: Nonparametric Density Estimation the $L_{1}$ View. Wiley, New York 1985. | MR
[3] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes. Springer–Verlag, New York 1979. | MR
[4] A. Gil and A. Luis: Modelling the U. S. interest rate in terms of I(d) statistical model. Quart. Rev. Economics and Finance 44 (2004), 475–486.
[5] R. Hasminskii and I. Ibragimov: On density estimation in the view of Kolmogorov’s ideas in approximation theory. Ann. Statist. 18 (1990), 999–1010. | MR
[6] J. González-Hernández, R. R. López-Martínez, and R. Pérez-Hernández: Markov control processes with randomized discounted cost in Borel space. Math. Meth. Oper. Res. 65 (2007), 27–44.
[7] S. Haberman and J. Sung: Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary. Insurance Math. Econom. 36 (2005), 103–116. | MR
[8] O. Hernández-Lerma: Adaptive Markov Control Processes. Springer–Verlag, New York 1989. | MR
[9] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer–Verlag, New York 1996. | MR
[10] O. Hernández-Lerma and J. B. Lasserre: Further Topics on Discrete-Time Markov Control Processes. Springer–Verlag, New York 1999. | MR
[11] O. Hernández-Lerma and W. Runggaldier: Monotone approximations for convex stochastic control problems. J. Math. Syst., Estimation, and Control 4 (1994), 99–140. | MR
[12] P. Lee and D. B. Rosenfield: When to refinance a mortgage: a dynamic programming approach. European J. Oper. Res. 166 (2005), 266–277.
[13] R. G. Newell and W. A. Pizer: Discounting the distant future: how much do uncertain rates increase valuation? J. Environmental Economic and Management 46 (2003), 52–71.
[14] B. Sack and V. Wieland: Interest-rate smooothing and optimal monetary policy: A review of recent empirical evidence. J. Econom. Business 52 (2000), 205–228.
[15] M. Schäl: Conditions for optimality and for the limit of n-stage optimal policies to be optimal. Z. Wahrsch. Verw. Gerb. 32 (1975), 179–196. | MR
[16] M. Schäl: Estimation and control in discounted stochastic dynamic programming. Stochastics 20 (1987), 51–71. | MR
[17] N. L. Stockey and R. E. Lucas, Jr.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge, MA 1989. | MR