Keywords: possibly transient Markov chains; discounted approach; first return time; uniqueness of solutions to the multiplicative Poisson equation
@article{KYB_2009_45_5_a2,
author = {Cavazos-Cadena, Rolando},
title = {The risk-sensitive {Poisson} equation for a communicating {Markov} chain on a denumerable state space},
journal = {Kybernetika},
pages = {716--736},
year = {2009},
volume = {45},
number = {5},
mrnumber = {2599108},
zbl = {1190.93104},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a2/}
}
Cavazos-Cadena, Rolando. The risk-sensitive Poisson equation for a communicating Markov chain on a denumerable state space. Kybernetika, Tome 45 (2009) no. 5, pp. 716-736. http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a2/
[1] A. Arapostathis, V. K. Borkar, E. Fernández-Gaucherand, M. K. Gosh, and S. I. Marcus: Discrete-time controlled Markov processes with average cost criteria: a survey. SIAM J. Control Optim. 31 (1993), 282–334. | MR
[2] A. Brau-Rojas, R. Cavazos-Cadena, and E. Fernández-Gaucherand: Controlled Markov chains with a risk-sensitive criteria: some counterexamples In: Proc. 37th IEEE Conference on Decision and Control, Tempa 1998, pp. 1853–1858.
[3] R. Cavazos–Cadena and E. Fernández-Gaucherand: Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions. Math. Methods Oper. Res. 43 (1999), 121–139. | MR
[4] R. Cavazos–Cadena and E. Fernández–Gaucherand: Risk-sensitive control in communicating average Markov decision chains. In: Modelling Uncertainty: An examination of Stochastic Theory, Methods and Applications (M. Dror, P. L’Ecuyer, and F. Szidarovsky, eds.), Kluwer, Boston 2002, pp. 525–544.
[5] R. Cavazos–Cadena and D. Hernández-Hernández: Solution to the risk-sensitive average cost optimality equation in communicating Markov decision chains with finite state space: An alternative approach. Math. Methods Oper. Res. 56 (2003), 473–479. | MR
[6] R. Cavazos–Cadena: Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 263–285. | MR
[7] R. Cavazos–Cadena and D. Hernández-Hernández: A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 2005, 175–212. | MR
[8] R. Cavazos–Cadena and D. Hernández-Hernández: Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. Systems Control Lett. 58 (2009), 254–258. | MR
[9] G. B. Di Masi and L. Stettner: Risk-sensitive control of discrete time Markov processes with infinite horizon. SIAM J. Control Optim. 38 (1999), 61–78. | MR
[10] W. H. Fleming and W. M. McEneany: Risk-sensitive control on an infinite horizon. SIAM J. Control Optim. 33 (1995), 1881–1915. | MR
[11] D. Hernández-Hernández and S. I. Marcus: Risk-sensitive control of Markov processes in countable state space. Systems Control Lett. 29 (1996), 147–155. | MR
[12] O. Hernández-Lerma: Adaptive Markov Control Processes Springer, New York 1988. | MR
[13] R. A. Howard and J. E. Matheson: Risk-sensitive Markov decision processes. Management Sci. 18 (1972), 356–369. | MR
[14] D. H. Jacobson: Optimal stochastic linear systems with exponential performance criteria and their relation to stochastic differential games. IEEE Trans. Automat. Control 18 (1973), 124–131. | MR
[15] S. C. Jaquette: Markov decison processes with a new optimality criterion: discrete time. Ann. Statist. 1 (1973), 496–505. | MR
[16] S. C. Jaquette: A utility criterion for Markov decision processes. Management Sci. 23 (1976), 43–49. | MR | Zbl
[17] A. Jaśkiewicz: Average optimality for risk sensitive control with general state space. Ann. Appl. Probab. 17 (2007), 654–675. | MR
[18] M. Loève: Probability Theory I. Springer, New York 1980. | MR
[19] M. L. Puterman: Markov Decision Processes. Wiley, New York 1994. | MR | Zbl
[20] E. Seneta: Nonnegative Matrices. Springer, New York 1980.
[21] K. Sladký: Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44 (2008), 205–226. | MR
[22] K. Sladký and R. Montes-de-Oca: Risk-sensitive average optimality in Markov decision chains Raul. In: Oper. Res. Proc. 2007 (Selected Papers of the Internat. Conference on Operations Research 2007, Saarbruecken, J. Kalcsics and S. Nickel, eds.), Springer-Verlag, Berlin – Heidelberg 2008, pp. 69–74.